
Journal of Information Assurance and Security 4 (2009) 151-160

Received June 10, 2009 1554-1010 $ 03.50 Dynamic Publishers, Inc

Online Self-Organised Map Classifiers as Text
Filters for Spam Email Detection

Bogdan Vrusias1 and Ian Golledge2

1University of Surrey, Department of Computing,

Guildford, Surrey, GU2 7XH, UK

b.vrusias@surrey.ac.uk

2 University of Surrey, Department of Computing,

Guildford, Surrey, GU2 7XH, UK

ian_golledge@hotmail.com

Abstract: Email communication today is a way of working and
communicating for most businesses and public in general. Being

able to efficiently receive and send emails therefore becomes a
must. Spam email detection and removal then becomes a vital
process for the successful email communications, security and

convenience. This paper describes a novel way of analysing and
filtering incoming emails based on the text (keyword) salient
features identified within. The method presented has promising
results and at the same time significantly better performance than

other statistical and probabilistic methods and at the same time
offers a mechanism that can automatically adapt to new (unseen)
email trends. The salient features of emails are selected

automatically based on functions combining word frequency and
other discriminating matrices, and then encoded into appropriate
numerical vector models. The method is compared against the

state-of-the-art Multinomial Naïve Bayes, Support Vector
Machines and Boosted Decision Tress classifiers for identifying
spam. The proposed automatic adaptable feature extractor method
and online Self-Organising Map seems to give significantly better

results, with the minimal cost.

Keywords: Spam Detection, Self-Organising Maps,

Multinomial Naïve Bayesian, Support Vector Machines, Boosted

Decision Tress, Adaptive Text Filters.

1 Introduction

Typically a user receives on average between 20 to 100

spam emails per day. This number increases year by year

and it brings with it a whole series of problems to a network

provider and to an end user. Networks as a whole are

flooded every day with millions of spam emails wasting

network bandwidth while end users suffer with spam

engulfing their mailboxes. Users have to spend time and

effort sorting through to find legitimate emails, and within a

work environment this can considerably reduce productivity.

On average 5%-10% of spam emails manage to escape the

commercial filters that are installed on the email server or

even on the individual computers. Realistically this can take

an individual even up to 90 minutes per day “cleaning” the

mail box, costing massive amounts of money and time to

companies or everyday users. Spam emails increase at more

than 1% per day, and this indicates that not only better

filters need to be developed, but also there is a need for an

automatically adaptable filter to detect new spam emails.

Over the last decade many anti-spam filter techniques

have been developed to achieve significantly good results

[3]-[8], [12], [14], [18], [19], but the issue was always that

these models are built usually manually and need to be

rebuilt to accommodate new spam emails. The overall

premise of spam filtering is text categorisation where an

email can belong in either of two classes: Spam or Ham

(legitimate email). Text categorisation can be applied here

as the content of a spam message tends to have few

mentions in that of a legitimate email. Therefore the content

of spam belongs to a specific genre which can be separated

from normal legitimate email.

Spam is not only related to emails, but other forms of text

as well. Recently spam websites have also intruded into our

personal lives and now is one of the major headaches [21].

The concept though remains the same: spam text can be

detected based on its context. Original ideas for filtering

focused on matching keyword patterns in the body of an

email that could identify it as spam [9]. A manually

constructed list of keyword patterns such as “cheap Viagra”

or “get rich now” would be used. For the most effective use

of this approach, the list would have to be constantly

updated and manually tuned. Overtime the content and topic

of spam would vary providing a constant challenge to keep

the list updated. This method is infeasible, as it would be

impossible to manually keep up with the spammers.

Sahami et al. [5] is the first to apply a machine learning

technique to the field of anti-spam filtering. They trained a

Naïve Bayesian (NB) classifier on a dataset of pre-

categorised ham and spam. A vector model is then built up

of Boolean values representing the existence of pre-selected

attributes of a given message. As well as word attributes, the

vector model could also contain attributes that represent

non-textual elements of a message. For example, this could

include the existence of a non-matching URL embedded in

the email. Other non-textual elements could include whether

an email has an attachment, the use of bright fonts to draw

attention to certain areas of an email body and the use of

embedded images, all could be possible spam features.

Metsis et al. [3] evaluated five different versions of Naïve

Bayes on a particular dataset. Some of these Naïve Bayesian

versions are more common in spam filtering than others.

152 Vrusias and Golledge

The conclusion was that the two Naïve Bayes versions used

least in spam filtering provided the best success. These are a

Flexible Bayes method and a Multinomial Naïve Bayes

(MNB) with Boolean attributes. The lower computational

complexity of the MNB provided it the edge. The purpose of

their paper is not only to contrast the success of five

different Naïve Bayes techniques but to implement the

techniques in a situation of a new user training a

personalized learning anti-spam filter. This involved

incremental retraining and evaluating of each technique.

Naïve Bayes have also been equally successful in identifying

spam websites [21].

Furthermore, methods like Support Vector Machines

(SVM) have also been used to identify spam [12]-[14].

Joachims [13] was the first to present the idea of using the

technique in spam filtering and explained why they would

be suitable. Specifically, term frequency with boosting trees

and binary features with SVM’s had acceptable test

performance, but both methods used high dimensional

(1000-7000) feature vectors.

The use of decision trees for text categorisation appears

popular in the literature [17] and has also been used as a

comparative technique for the purposes of spam filtering

[12]. Boosting is also a popular technique in text

categorization [15] and has shown improved results over

non-boosted techniques. Boosting trees have been applied to

spam filtering against base-line techniques and have also

shown a strong application in this field [19], [18].

Another approach is to look into semantics. Youn &

McLeod introduced a method to allow for machine-

understandable semantics of data [7]. The basic idea here is

to model the concept of spam in order to semantically

identify it. The results reported are very encouraging, but

the model constructed is static and therefore not adaptable.

The future of semantics lies not only on detection of spam,

but also on the prevention. Kassoff et al [23] proposed a new

way of annotating and describing emails, called Semantic

Email Addressing (SEA), where emails are defined by a

semantic layer in order to automatically communicate with

the server and mail clients and negotiate its delivery.

Finally, the latest machine learning approaches, such as

the ant colony optimisation algorithm [22], have shown

comparable results to NB techniques, but the issue with such

supervised techniques is that most parameters are hard

tuned and costly to reset for new datasets. Having to

manually adjust the training parameters is not an option for

constantly changing emails.

Most of the above proposed techniques struggled with

changes in the email styles and words used on spam emails.

Therefore, it made sense to consider an automatic learning

approach to spam filtering, in order to adapt to changes. In

this approach spam features are updated based on new

coming spam messages. This, together with a novel method

for training online Self-Organising Maps (SOM) [2] and

retrieving the classification of a new email, indicated good

performance. Most importantly, the method proposed only

misclassified very few ham messages as spam, and had

correctly identified most spam messages. This exceeds the

performance of other probabilistic approaches, as later

proven in the paper.

2 Spam Detection Methods

As indicated by conducted research one of the best ways so

far to classify spam is to use probabilistic models, i.e.

Bayesian [3], [5], [6], [8], [9]. For that reason, this paper is

going to compare the approach of using SOMs to what

appears to be best classifiers for spam, the Multinomial

Naïve Bayes (MNB) Boolean, Support Vector Machines

(SVM) and Boosted Decision Tress (BDT) classifier. All

approaches need to transform the text email message into a

numerical vector, therefore several vector models have been

proposed and are described later on.

2.1 Classifying with Multinomial NB Boolean

The MNB treats each message d as a set of tokens.

Therefore d is represented by a numerical feature vector

model x. Each element of the vector model represents a

Boolean value of whether that token exists in the message or

not. The probability of P(x|c) can be calculated by trialling

the probability of each token t occurring in a category c. The

product of these trials, P(ti|c), for each category will result in

the P(x|c) for the respective category. The equation is then

[6]:

() ()

() ()
T

ctPcP

ctPcP

hsccc

m

i

xi
si

m

i

xi
sis

>

⋅

⋅

∑ ∏

∏

∈
=

=

}{
1

1

|

|

 (1)

Each trial P(t|c) is estimated using a Laplacean prior:

()
c

ct

M

M
ctP

+

+
=

2

1
|

,
 (2)

Where Mt,c is the number of training messages of category c

that contain the token t. Mc is the total number of training

messages of category c. The outcomes of all these trials are

considered independent given the category which is a naïve

assumption. This simplistic assumption overlooks the fact

that co-occurrences of words in a category should not be

independent, however this technique still results in a very

good performance of classification tasks.

2.2 Classifying with Support Vector Machines

From early research in spam filtering Support Vector

Machines (SVM) were commonly used techniques and

demonstrated successful results. Joachims [13] outlined

some reasons why SVM work well for text categorization, in

particular spam filtering. More specifically he argued that

SVM have the ability to handle large feature spaces. It could

be assumed that some features in an input space are

irrelevant; however it is known in text categorisation that

even lower ranked features can be useful. Consequently a

good performing classifier should take into account as many

features as possible and this lends itself to SVM. SVM also

Online Self-Organised Map Classifiers as Text Filters for Spam Email Detection 153

have the ability to cope with problems that features sparse

data. High dimensional vector representations of emails will

result in few entries being non zero. However evidence in

research suggests that algorithms like SVM are able to

handle these problems. It can be assumed that most text

classification problems are linearly separable. Considering

ham and spam, the keyword based features of the two

documents should be distinct, therefore represented as a

vector they can be linearly separable. SVM are based on

finding these linear divisions consequently the algorithm

should be well suited to the task of spam filtering.

The SVM algorithm maps a non-linear instance, for

example an email vector onto a new space which can be

separated by a straight line. This straight line will not look

straight in the original vector space. The new space which

the SVM uses is called a maximum margin hyperplane.

Considering the classes ham and spam that are linearly

separable, the maximum margin hyperplane is a line that

can find the greatest separation between ham and spam. As

mentioned previously, examples in [12]-[14] all show good

results in spam filtering from SVM. Therefore this model is

important to consider in this project as a comparative

classifier.

2.3 Classifying with Boosted Decision Tress

Decision Tress algorithms attempt a divide and conquer

approach to classification. Working top down from the

feature set of a vector, the algorithm selects the feature that

best divides the classes and selects this as the root node.

Branches from the root node reflect possible values of this

attribute. The problem is then split on the second best

attribute, and this recursive algorithm develops a tree like

structure of all the features. Each leaf node will have a

respective class value and the tree essentially forms a set of

rules. Test inputs follow the tree down selecting between

branches based on its own features to reach a decision leaf

node to associate a class. As described previously this form

of classification has been used often in text classification.

However in spam filtering the use of boosting alongside

decision trees appears to be a more common method.

Boosting was first presented by Schapire [16] and is

intended to improve the performance of any learning

algorithm. The algorithm maintains training examples in a

dataset with an importance weighting. Over training, input

vectors that appear easy to classify are given a lower

weighting, vectors that are harder to classifier are given a

higher weighting. The boosting algorithm then uses these

associative weights to force the classifier to concentrate on

these harder examples. Example implementations of the

boosting algorithm can be found in [15], [16], [18].

Some papers studied applied this boosting algorithm to

decision tree classifiers upon a spam filtering classification

problem. Ali and Xiang [18] for example applied a boosting

algorithm to a particular model of decision tree, J48. By

comparing results using the decision tree classifier with and

without the boosting algorithm there was a notable increase

in performance. These results along with others mentioned

in literature show the successful application of this method

to spam filtering and this method is important to be

considered in this paper.

2.4 Classifying with Self-Organising Maps

Self-organising map (SOM) systems have been used

consistently for classification and data visualisation in

general [2]. The main function of a SOM is to identify

salient features in the n-dimensional input space and squash

that space into two dimensions according to similarity.

Despite the popularity, SOMs are difficult to use after the

training is over. Although visually some clusters emerge in

the output map, computationally it is difficult to classify a

new input into a formed cluster and be able to semantically

label it. For the classification, an input weighted majority

voting (WMV) method is used for identifying the label for

the new unknown input [12]. Using this WMV technique,

the SOM is now highly suitable for spam filtering. The

classifier can be presented with email vectors for training to

form clusters of similar vectors. Labelling of the new inputs

is based on the closest distance of each input vector from the

node vector that was given a label during the training

process. After labelling, new incoming test emails can be

classified into ham or spam.

For the proposed process for classifying an email and

adapting it to new coming emails, the feature vector model

is constructed based on the first batch of emails and then the

SOM is trained online on the first batch of emails with

random initial weights. Then, a new batch of emails is

appended, the feature vector model is recalculated, and the

SOM is retrained from the previous weights, but on the new

training batch only. Finally, more batches of emails are

continuously inserted and the process is repeated until all

batches are finished.

For the purpose of the experiments, as described later, a

10x10 nodes SOM is trained for 1000 cycles, where each

cycle is a complete run of all inputs. The learning rate and

neighbourhood value is started at high values, but then

decreased exponentially towards the end of the training [11].

Each training step is repeated several times and results are

averaged to remove any initial random bias.

The classifiers already mentioned and researched in this

project, MNB, SVM and Boosted Decision Trees, provided

good benchmark models for comparison. There is evidence

of consistent performance of these models, and it would be

interesting to contrast a SOM classifier against them.

3 Identifying Salient Features

The process of extracting salient features is probably the

most important part of the methodology. The purpose here is

to identify the keywords (tokens) that differentiate spam

from ham. Typical approaches so far focused on pure

frequency measures for that purpose, or the usage of the

term frequency inverse document frequency (tf*idf) metric

[10]. Furthermore, the weirdness metric that calculates the

frequency ration of tokens used in special domains like

spam, against the ratio in the British National Corpus

(BNC), reported accuracy to some degree [1], [11].

154 Vrusias and Golledge

3.1 Identifying Salient Keywords

This paper uses a combination function of the weirdness and

a modified version of the tf*idf metrics; where both metrics

are used in their normalised form. The weirdness metric

compares the frequency of the token in the spam domain

against the frequency of the same token in BNC:

BNC

BNC

S

S

t

t

t

t

ts

N

f

N

f

weirdness = (3)

The weirdness of spam token ts is calculated by dividing

the frequency f of the token by the total number of token

frequencies in the spam set Nts. This is then divided by the

frequency of the token in the BNC divided by total number

of token frequencies in the BNC NtBNC. Tokens with high

weirdness values represent tokens that occur less frequently

in the BNC, resulting in unusual tokens, or otherwise tokens

that “everyday” British language is not frequently uses. In

terms of email words, this will find spam and ham words

which are considered less common in natural language, and

are distinguishable. This value can therefore aid the

extraction of important words from an email dataset and at

the same time removing the most common words, such as

conjunctions, pronouns, interrogatives, prepositions or other

common part of speech words.

For tf*idf the “document” is considered as a category

where all emails belonging to that same category, spam or

ham, are merged together, and document frequency is the

total number of categories (i.e. 2 in this instance: spam and

ham). In order to have a fair comparison between the

different batches and new emails presented, the normalised

tf*idf is considered:

∑

×

×

=

HS

HS

S

S

t

t

t

t
t

t

n

N
f

n

N
f

idftf

,

,1

2

2

2

log

log

* (4)

The tf*idf value for a particular spam word token ts would

be calculated by finding the product of the frequency f of

that term and the inverse document frequency where N is

the number of documents (i.e. two, spam and ham) and nt is

the number of documents that token occurs in (either one or

two). This value is then divided by the sum of all tokens in

the both ham and spam documents. A high tf*idf value

demonstrates that a particular token is frequent in a

particular document but infrequent considering the whole

document dataset. Therefore, this term weighting technique

can highlight spam words which occur less frequently in

ham emails to help identify features to distinguish between

the two classes.

Both weirdness and tf*idf statistical measurements can

provide an information gain for selecting keyword features

for email vectors. The product of the two normalised

statistical values has been found to be a good metric for

ranking the keywords. The ranking Rt of each token is

therefore calculated based on:

ttt idftfweirdnessR ∗×= (5)

The rating metric R is used to build a list of most salient

features in order to encode emails into binary numerical

input vectors. Salient spam features are the words that most

frequently appear in spam emails and are not as common in

the general language. Some of these keywords can be seen

in Figure 1.

SPAM EMAIL HAM EMAIL

Subject: dobmeos with hgh my energy level has gone

up ! stukm
Introducing doctor – formulated hgh

human growth hormone - also called hgh is

referred to in medical science as the master

hormone. it is very plentiful when we are young ,

but near the age of twenty - one our bodies begin to
produce less of it . by the time we are forty nearly
everyone is deficient in hgh ,
and at eighty our production has normally diminished at
least 90 - 95 % .
advantages of hgh :

- increased muscle strength
- loss in body fat

- increased bone density
- lower blood pressure

- quickens wound healing

- reduces cellulite

- increased sexual potency

…

Subject: re : entex transistion
thanks so much for the memo . i would like to reiterate
my support on two key
issues :
1) . thu - best of luck on this new assignment . howard
has worked hard and done a great job ! please don ' t be
shy on asking questions . entex is
critical to the texas business , and it is critical to our team
that we are timely and accurate .

2) . rita : thanks for setting up the account team .
communication is critical to our success , and i
encourage you all to keep each other informed
at all times . the p & l impact to our business can be
significant .
additionally , this is high profile , so we want to assure top

quality .
thanks to all of you for all of your efforts . let me know if
there is anything i can do to help provide any additional
support .
rita wynne
…

Figure 1. Sample spam and ham emails. Large bold words

indicate top ranked spam words and smaller words with low

ranking, whereas normal black text indicate non spam

words.

In most cases of generating feature vectors, scientists

usually concentrate on static models that require complete

refactoring when information changes or when the user

provides feedback. In order to cope with the demand of

changes, the proposed model can automatically recalculate

the salient features and appropriately adapt the vector model

to accommodate this (see Figure 2).

The method can safely modify/update the vector model

every 100 emails in order to achieve best performance. The

choice of 100 emails for an update was chosen based on

several trials of the given dataset. The process though can be

automated to update when the performance of the system

declines or when new keywords with high frequency are

detected in the incoming emails. The rank list is modified

depending on the contents of the new coming emails. This is

visualised in Figure 3 where it is observable that as more

email batches (of 100 emails) are presented, the tokens in

the list get updated. New “important” tokens are quickly

placed at the top of the rank, but the ranking changes based

on other new entries.

Online Self-Organised Map Classifiers as Text Filters for Spam Email Detection 155

Split text into

keywords

Remove less

important

keywords

Calculate

ranking

K1

t1

t1

email

Ranked ham

keywords

Ranked spam

keywords

Figure 2. Keyword selection data flow diagram for both

spam and ham emails. The result of the process is two

ordered lists of ham and spam emails that form the basis for

the next stage of encoding feature vectors.

Spam Key-Words Ranking

0

50

100

150

200

250

300

350

400

450

500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20 30 40 50

Batch No

R
a

n
k

viagra

hotlist

xanax

pharmacy

vicodin

pills

sofftwaares

valium

prozac

computron

Figure 3. Random spam keyword ranking as it evolved

through the training process for Enron1 dataset. Each batch

contains 100 emails. The graph shows that each new

keyword entry has an impact on the ranking list, and it then

fluctuates to accommodate new-coming keywords. Salient

keywords eventually end up at the bottom of the graph (i.e.

top rated).

3.2 Encoding Feature Vectors

With the selection of keywords complete, they can now be

used to create the vectors representing each email. This

scenario considers a single email being converted into a

vector. The email will be split into individual word tokens

(String Tokenizer) as before. Previous experiments

suggested that a proportion of the ranked ham and spam

keywords will then be considered, e.g. the top 500 of spam

words, in order to build good representative vectors [20].

Each keyword will be compared to the tokens extracted from

the input email. If the token exists in the email a ‘1’ is

added to the vector, if it doesn’t exist in the email a ‘0’ is

added. However this method suffered from slow training due

to the high-dimensional vectors and also suffered from lack

of representative words as sometimes 500 was not enough to

cover all past and new coming spam keywords, therefore

there were issues with sparse data (i.e. almost empty

vectors).

A potential solution was devised that instead of having

each element representing just one keyword, but to have

each element represent a number of keywords, as

recommended in [12]. So instead of being a binary value,

that element would be a numeric value between 0 and 1

specifying the proportion of keywords in that range that

occur in the email. To further this design it was decided to

put more importance on the higher ranking spam words.

Occurrences of higher ranked spam words are strong

examples of a spam email. Whereas spam keywords ranked

much lower indicate less strongly of a spam email, and

potentially very low ranked spam words maybe even occur

in ham emails. To achieve this, the number of keywords

representing each element would increase the lower down

the spam rankings. This is shown in Figure 4:

Figure 4. Keywords representing each element in a vector

With this new capacity, more than just the first 500 spam

elements could be considered, in order to fit a vector of only

25 dimensions. In this design it was decided to include

almost all the spam keywords into the vector. To achieve

this, the number of keywords in each vector would have to

adapt to the size of the spam keyword attribute set. The

number of keywords per vector element would be calculated

by taking the element number and raising it to a power.

After several experiments with different choices for the size

of the vector, it was found that 25 dimensions are more than

enough to represent spam emails.

The spam vector now shows fractions of keyword

occurrences across the whole vector. This particular

example is a strong indication of a spam email. The ham

example vector shows data towards the end of the vector

demonstrating a small fraction of low spam keyword

occurrences. The majority of high spam features will look

empty and this will strongly reflect a ham email. This

design also provides more information to the classifier than

the previous design.

Furthermore, it had been discovered that many of the ham

vectors were empty sets. These sets demonstrated that the

ham emails had no spam keyword features and therefore

were very strongly ham emails. To avoid a completely empty

dataset a simple binary rule based feature was added to the

vector. This resulted in all vectors not being completely

empty and having some information to demonstrate features

of a category. This feature was designed so that if the SOM

found a 1in the 26th vector feature then it would cluster these

vectors together as being ham emails. However, unlike the

156 Vrusias and Golledge

501st element reported in [20], this 26th vector element does

not have such a strong effect on classification. Although the

results of 25 vector elements were strong and influential on

training, the addition of the 26th vector element purely

prevents providing the classifier with an empty set.

Along with these keyword occurrences, numerical

statistical values will also be calculated and concatenated

onto the end of the vector. The output is therefore a single n-

dimensional vector representing one email. This process is

then conducted over a dataset of emails to create a full set of

vectors. This design of vector creation shows the basic

system flow for creating a vector (see Figure 5). However it

is intended that this design will be flexible as the number

and type of features selected will vary.

Figure 5. Vector creating flow diagram

4 Experimentation: Spam Detection

In order to evaluate spam filters a dataset with a large

volume of spam and ham messages is required. Gathering

public benchmark datasets of a large size has proven

difficult [8]. This is mainly due to privacy issues of the

senders and receivers of ham emails with a particular

dataset. Some datasets have tried to bypass the privacy issue

by considering ham messages collected from freely

accessible sources such as mailing lists. The Ling-Spam

dataset consists of spam received at the time and a collection

of ham messages from an archived list of linguist mails. The

SpamAssassin corpus uses ham messages publicly donated

by the public or collected from public mailing lists. Other

datasets like SpamBase and PU only provide the feature

vectors rather than the content itself and therefore are

considered inappropriate for the proposed method.

4.1 Setup

One of the most widely used datasets in spam filtering

research is the Enron dataset From a set of 150 mailboxes

with messages various benchmark datasets have been

constructed. A subset as constructed by Androutsopoulos et

al. [6] is used, containing mailboxes of 6 users within the

dataset. To reflect the different scenarios of a personalised

filter, each dataset is interlaced with varying amounts of

spam (from a variety of sources), so that some had a ham-

spam ratio of 1:3 and others 3:1.

To implement the process of incremental retraining the

approach suggested by Androutsopoulos et al. [6] is adapted,

where the messages of each dataset are split into batches

b1,…,bl of k adjacent messages. Then for batch i=1 to l-1 the

filter is trained on batch bi and tested on batch bi+1. The

number of emails per batch k=100.

The SOM is retrained every 100 emails. For testing

purposes the SOM is tested on 100 emails at a time. In

practice the SOM will be presented with one incoming

email at a time to classify. The SOM is trained over 100

cycles with an initial neighbourhood effect of 6 nodes,

reducing to 0.1 through training.

The performance of a spam filter is measured on its

ability to correctly identify spam and ham while minimising

misclassification. Nh
�

h and ns
�

s represent the number of

correctly classified ham and spam messages. Nh
�

s represents

the number of ham misclassified as spam (false positive)

and ns
�

h represents the number of spam misclassified as

ham (false negative). Spam precision and recall is then

calculated.

These measurements are useful for showing the basic

performance of a spam filter. However they do not take into

account the fact that misclassifying a Ham message as Spam

is an order of magnitude worse than misclassifying a Spam

message to Ham. A user can cope with a number of false

negatives, however a false positive could result in the loss of

a potential important legitimate email which is unacceptable

to the user. Therefore, when considering the statistical

success of a spam filter, the consequence weight associated

with false positive emails (i.e. non spam emails that were

incorrectly classified as spam emails) should be taken into

account. Androutsopoulos et al. [6] introduced the idea of a

weighted accuracy measurement (WAcc) in order to address

this issue:

sh

sshh

NN

nn
WAcc

+⋅

+⋅
= →→

λ

λ
λ (6)

Nh and Ns represent the total number of ham and spam

messages respectively. In this measurement each legitimate

ham message nh is treated as λ messages. For every false

positive occurring, this is seen as λ errors instead of just 1.

The higher the value of λ the more cost there is of each

misclassification. When λ =99, misclassifying a ham

message is as bad as letting 99 spam messages through the

filter. The value of λ can be adjusted depending on the

scenario and consequences involved.

As well as a comparative analysis, this paper will also

give a visual analysis of the model. The visual capabilities of

the SOM were one of the reasons for its inclusion here.

4.2 Results

The design behind these initial experiments is to replicate

the situation faced by an email user to progressively train a

classifier to filter spam based on their individual email set.

This basically involves small amounts of training data

initially growing in size as the incremental retraining

process continues and more incoming mail is presented.

The experiment will run over 30 batches of each of the six

datasets. This results in 18,000 emails being trained and

Online Self-Organised Map Classifiers as Text Filters for Spam Email Detection 157

tested upon in this experiment. Each of the six datasets has

been pre-processed to include the mail belonging to a single

user interlaced with spam messages. Therefore the attribute

sets will be cleaned to reflect a new learning experiment for

each user. There is a variance in the ratio of ham to spam

messages through the six datasets, and it was interesting to

see how this fluctuation changes the results.

4.2.1 SOM vs BDT and SVM

The ham results are more or less perfect for all three

methods used. The difference comes when measuring the

recall for spam (Table 1). SOM seams to deal with a wider

range of emails, whereas BDT and SVM do well on Enron

2, 5 and 6, but not as well for the rest.

As a further comparison in line with the other phase

evaluations conducted in this paper, the weight accuracy

results of the classifiers will be compared. The dataset

Enron 4 typifies well the pattern of weighted accuracy

results across all datasets. The graph in Figure 6 shows the

WAcc results for all three classifiers over the Enron 4

dataset.

 SOM BDT SVM

Enron 1 87.31 87.07 87.20

Enron 2 91.74 95.20 97.21

Enron 3 94.82 94.44 94.50

Enron 4 85.87 85.55 85.73

Enron 5 97.87 97.87 97.87

Enron 6 94.43 94.39 94.43

Table 1. Contrasting the spam recall (%) results for SOM,

BDT and SVM. The SOM classifier seems to be consistently

better than the other two.

Figure 6. Weight accuracy results for the SOM, BDT and

SVM classifiers on Enron 4 dataset. All results are more or

less identical for all three methods.

The performance of all three classifiers is so consistent

the lines are barely distinguishable. Across datasets 1 and 3-

6 only 6 ham emails have been misclassified, this is the over

the classification of 15,000 emails. This performance is

highly impressive and highly desirable for a spam filtering

system. The strength of all three models again outlines the

strength of the vector creation design.

4.2.2 SOM vs MNB

Firstly considering the recall of Ham, apart from Enron 2,

the SOM model outperforms the results of the MNB

consistently. The paper considered datasets like Enron 1 and

Enron 5 as tough and this can be seen by the MNB drop in

ham recall. However the SOM maintains strong

performance over the MNB. This set of results is an

excellent demonstration of the capabilities of the SOM in

matching and improving on other spam filtering techniques

shown in research.

The spam recall for the MNB however is consistently

better than the SOM. This is related to the trade off in

performance seen previously in this report between ham

recall and spam recall. When considering the WAcc results

of both, the performance of the SOM almost consistently

outperforms the MNB. The graph in Figure 7 shows the

average WAcc result for each of the six Enron datasets.

Apart from Enron 2 the SOM is consistently above the MNB

results.

 HAM SPAM

 SOM MNB SOM MNB

Enron 1 99.95 95.25 87.31 96

Enron 2 96.46 97.83 91.74 96.68

Enron 3 100 98.88 94.82 96.64

Enron 4 99.45 99.05 85.87 97.79

Enron 5 100 95.64 97.87 99.69

Enron 6 99.86 96.88 94.43 98.1

Table 2. Contrasting the spam recall and precision (%)

results for SOM and MNB. SOM seems to be better at

identifying ham emails, whereas MNB does better on spam

emails.

Figure 7. WAcc results over all six datasets for SOM and

MNB. The MNB seems to be costing more than the SOM,

which means that it misclassifies more ham emails as spam,

i.e. some “good” emails may get lost!

Both classifiers use a different feature representation,

however the feature vector have been modified to suit that of

the SOM, and the results are across the same dataset of

emails. Therefore these results show the overall prototype

model presented in this report can exceed the results of

models conducted over the same data.

158 Vrusias and Golledge

4.2.3 Visual Evaluation of SOM

After evaluating the SOM against related work in the

research area, the results demonstrated the SOMs suitability

for spam filtering meeting the objectives of this project. One

of the other objectives included for this paper was to include

a visual representation of the classification of ham and

spam. This is part of the reason for the selection of the SOM

because its abilities of visual representation were identified

at the start of the project. This visual representation will

give a further evaluation on the performance of the SOM.

Although the results have been very positive there

remains a current problem with the SOM classification

around the 6th batch of the Enron 2 dataset. The

performance on the dataset is accurate to begin with but

there is a drop in accuracy around batch 6. Using a visual

analysis it may be easier to see if the SOM struggles to

recognise patterns in this batch. The SOM is setup as a

10x10 2-dimensional grid, containing 100 nodes. Each node

is made of up n-dimensions of weights representing the

number of features in the training vectors. To represent the

SOM visually after a batch of training, the weights of each

node are summed to form 100 summed values. These values

topological position will be maintained in the 10x10 grid

formation with each node represented by a circle. The size

of the circle represents the value of the summation of

weights. Therefore a node represented by a large circle, will

have a large summation of the weights. In terms of the

features vectors in this described model, bigger weighted

summations, the larger circles, will represent patterns that

look like spam emails. In contrast the smaller circles will

represent the emptier features of ham emails.

This can be seen in Figure 8 where identifiable regions of

similar size circles (weight nodes) can be identified. The

figures show 10x10 grids of 100 nodes each. Large circles

demonstrate how spam like features cluster together and the

smaller circles show clusters of ham patterns. In the middle

of these regions the medium circles show the border between

the clustered regions.

The six node maps in Figure 8 show the results of

training on batch 2 through to batch 7 on the Enron 2

dataset. These maps show some interesting results. The first

map in the top left shows the map after the second batch of

training, 200 emails. Already, even with very little training

data, there are clear defined patterns visible. Weights which

are closest to spam emails locate in the top right corner of

the map while weights close to ham emails are in the bottom

left corner. The ham region of this map is a lot larger than

the spam region, and this is explained by the larger number

of ham training inputs in spam for this Enron 2 dataset. The

results of testing on this batch show strong results.

Batches 3 and 4 in Figure 8 show less definition in the

regions of spam and ham with the spam regions pushed to

either edge of the map during training. On the other hand

there are still clusters of similar inputs and the results for

both batches are good.

However batch 5 and 6 show a different pattern. The

regions of ham and spam are less clear in these batches.

Multiple smaller clusters of similar weights can be seen, but

there are no obvious defined regions. It is over these batches

(5 & 6) where the accuracy results fall dramatically. Over

batch 5 the ham accuracy drops badly and over batch 6 spam

accuracy drops badly. The smaller clusters in these two

batches show how the SOM has struggled to recognise

consistent patterns in these training sets and this reflects in

the poor results. Notably the SOM recovers well from these

bad batches and by batch 7 the clusters of ham and spam are

much more defined. The results for batch 7 are also very

strong. This demonstrates the SOMs ability to recover from

poor training data to minimise prolonged poor performance.

This is a desirable quality for a classifier, especially in this

spam filtering research domain.

Figure 8. Visual representation of SOM training on Enron

2. Large circles represent highly ranked spam emails and

small circles represent emails with no or few spam

keywords.

The main aspects to conclude from this visual evaluation

are that the SOM can create defined clusters with only a few

input examples, and also recover well after poor vectors are

presented to it. This evaluation again shows the strength of

having good feature selection. The SOM can find clear

distinctive patterns in a small number of examples and the

maps shown can clearly demonstrate successful clustering.

This visual evaluation also shows that even though the

SOMs learning neighbourhood is relatively small after the

first training batch, each subsequent batch of training has a

relatively large effect on the map. For example in Figure 8

the regions of small circles (ham nodes) seem to move about

the map between batches. This shows that the strength of

the input vectors can cause dramatic changes to the SOM

map and this explains the SOMs ability to recover well

between batches.

5 Conclusions

This paper has discussed and evaluated four classifiers for

Online Self-Organised Map Classifiers as Text Filters for Spam Email Detection 159

the purposes of categorising emails into classes of spam and

ham. All MNB Boolean, SVM and BDT and SOM methods

are incrementally trained and tested on 6 subsets of the

Enron dataset. The methods are evaluated using a weighted

accuracy measurement. A design model for comparing spam

classifiers was detailed, showing the use of weirdness and

tf*idf measurements to rank a list of most important spam

keywords.

MNB classifiers were identified as the most popular and

common models in spam filtering, whereas BDT and SVM

were shown to be applied in this field with good success.

The results of the SOM proved consistent over each dataset

maintaining an impressive spam recall, and only a small

percentage of ham emails are misclassified by the SOM.

Each ham missed is treated as the equivalent of missing 99

spam emails.

The six phases of design testing resulted in a prototype

model that included 26 vector features representing this

email. This model was then evaluated against the Enron

dataset showing consistent accuracy results. The SOM did

well to match and even exceed the accuracy of other better

known classifiers. The SOM was also evaluated visually

with the node maps showing the learning process of the

SOM. The SOM was seen to adapt quickly to changes in the

vector with no prolonged areas of poor performance. Poor

performance was noticed in one of the datasets and this was

explained by showing that the results stabled out after

progressive incremental training.

Acknowledgment

The authors would like to thank the anonymous reviewers

for their insightful comments and for selecting our paper to

be published in this special issue. A shorter version of this

paper appeared in the Proceedings of the International

Workshop on Computational Intelligence in Security for

Information Systems (CISIS 2008) [20]. Special thanks to

the Britain’s Royal Academy of Engineering and the

Department of Computing, University of Surrey, for

financially supporting this work.

References

[1] P. Manomaisupat, B. Vrusias and K. Ahmad.

“Categorization of Large Text Collections: Feature

Selection for Training Neural Networks”. In:

Intelligent Data Engineering and Automated Learning

- IDEAL 2006, LNCS, vol. 4224, pp. 1003-1013, 2006.

[2] T. Kohonen. Self-organizing maps, 2nd ed., Springer-

Verlag, New York, 1997.

[3] V. Metsis, I. Androutsopoulos and G. Paliouras. “Spam

Filtering with Naïve Bayes – Which Naïve Bayes?”, In:

CEAS, 3rd Conf. on Email and AntiSpam, California,

USA, 2006.

[4] L. Zhang, J. Zhu and T. Yao. “An Evaluation of

Statistical Spam Filtering Techniques”. In: ACM

Trans. on Asian Language Information Processing, III

(4), pp. 243-269, 2004.

[5] M. Sahami, S. Dumais, D. Heckerman and E. Horvitz.

“A Bayesian approach to filtering junk e-mail”, In:

Learning for Text Categorization – Papers from the

AAAI Workshop, pp. 55-62, 1998.

[6] I. Androutsopoulos, G. Paliouras, V. Karkaletsi, G.

Sakkis, C.D. Spyropoulos and P. Stamatopoulos.

“Learning to Filter Spam E-Mail: A Comparison of a

Naïve Bayesian and a Memory-Based Approach”, In:

Proceedings. of the Workshop Machine Learning and

Textual Information Access, pp. 1-13, 2000.

[7] S. Youn and D. McLeod. “Efficient Spam Email

Filtering using Adaptive Ontology”, In: 4th

International Conf. on Information Technology, pp.

249-254, 2007.

[8] R. Hunt and J. Carpinter. “Current and New

Developments in Spam Filtering”, In: 14th IEEE Int.

Conference on Networks, vol. 2, pp. 1-6, 2006.

[9] F. Peng, D. Schuurmans and S. Wang. “Augmenting

Naive Bayes Classifiers with Statistical Language

Models”, Information Retrieval, VII (3-4), pp. 317-

345, 2004.

[10] G. Salton and C. Buckley. “Term-weighting approaches

in automatic text retrieval”, Information Processing &

Management, XXIV (5), pp. 513-523, 1988.

[11] B. Vrusias. “Combining Unsupervised Classifiers: A

Multimodal Case Study”, PhD thesis, University of

Surrey, 2004.

[12] H. Drucker, D. Wu and V.N. Vapnik. “Support Vector

Machines for Spam Categorization”, In: IEEE

Transactions on Neural Networks, X (5), pp. 1048-

1054, 1999.

[13] T. Joachims. “Text Categorization with Support Vector

Machines: Learning with Many Relevant Features”, In:

Proceedings of 10th European Conference on Machine

Learning, pp. 137-142, 1998.

[14] A. Kolcz and J. Alspector. “SVM-Based Filtering of e-

Mail Spam with Content Specific Misclassification

Costs,” In: Proceedings of the Workshop on Text

Mining, San Jose, 2001.

[15] R.E. Schapire and Y. Singer. “A Boosting-Based

System for Text Categorization,” Machine Learning,

pp. 135-168, 2000.

[16] R.E. Schapire. “The Strength of Weak Learnability,”

Machine Learning, V (2), pp. 197-227, 1990.

[17] S.M. Weiss, C. Apte, J. Damerau, D.E. Johnson, F.J.

Oles, T. Goetz and T. Hampp. “Maximizing Text-

Mining Performance,” IEEE Intelligent Systems, pp.

63-69, 1999.

[18] S. Ali and Y. Xiang. “Spam Classification Using

Adaptive Boosting Algorithm,” In: 6
th

 IEEE/ACIS

International Conference on Computer and

Information Sciences, pp.972-976, 2007.

[19] X. Carreras and L. Marquez. “Boosting Trees for Anti-

Spam Email Filtering,” In: Proceedings of 4th Int.

Conference on Recent Advances in Natural Language

Processing, Bulgaria, pp.58-64, 2001.

[20] B. Vrusias and I. Golledge “Adaptable Text Filters and

Unsupervised Neural Classifiers for Spam Detection,”

In: Proceedings of the International Workshop on

Computational Intelligence in Security for Information

Systems, pp. 195-202, 2008.

[21] H. Najadat and I. Hmeidi. “Web Spam Detection Using

Machine Learning in Specific Domain Features”,

160 Vrusias and Golledge

Journal of Information Assurance and Security, III (3),

pp. 220-229, 2008.

[22] E.-S. M. El-Alfy. “Discovering Classification Rules for

Email Spam Filtering with an Ant Colony

Optimization Algorithm”, In: IEEE Congress on

Evolutionary Computation, pp. 1778 - 1783, 2009.

[23] M. Kassoff, C. Petrie, L.-M. Zen and M. Genesereth.

“Semantic Email Addressing: The Semantic Web

Killer App?”, IEEE Internet Computing, III (1), pp. 48

- 55, 2009.

Author Biographies

Bogdan Vrusias Born in Constanta, Romania in 1975, and then returned with
his family in Veroia, Greece in 1983, before moving to England in 1994 where
he currently lives. He graduated in 1998 with a BSc (Honours) in Computing
and IT from the University of Surrey, UK, where he also accomplished his PhD

in 2004 in the area of multimedia and neural computing. He worked for the
University of Surrey as a technology transfer associate in the area of data
mining and neural networks from 1998 to 2001, then as a research officer for
the EPSRC SoCIS project till 2004, followed by his current position as a
lecturer in the area of intelligent and distributed systems. He belongs to the
Biologically Inspired Modelling and Applications research group and his main
areas of research include neural computing, multimedia information retrieval,
distributed systems, business intelligence, image and video analysis, data
mining, knowledge representation and management.

Ian Golledge Born in Ipswich, UK in 1985, is currently a consultant in the
field of information security with a business and technology consultancy
specialist based in London at the start of his professional career outside of
academia. Prior to becoming a consultant he received his Bachelor of Science
degree in computing and information technology from the University of Surrey
in 2007 and his Master of Science degree in security technologies and
applications from the University of Surrey in 2008. His area of research
interests include artificial intelligence, in particular unsupervised classifiers,
cryptography and digital watermarking with focus now on the practice of
information security and security architecture.

