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Abstract: We present two biologically inspired approaches to 

traffic sign recognition based on Weightless Neural Networks 

(WNN): one based on Virtual Generalizing Random Access 

Memory (VG-RAM) neurons and the other on the Wilkes, 

Stonham and Aleksander Recognition Device (WiSARD) 

neurons. Both approaches employ the same neural architecture 

that models the transformations suffered by the images 

captured by the eyes from the retina to the primary visual 

cortex (V1) of the mammalian brain. We evaluated the 

performance of both approaches on the German Traffic Sign 

Recognition Benchmark (GTSRB).  Our system based on 

VG-RAM neurons achieved a performance significantly better 

than the one based on WiSARD neurons and was ranked fifth in 

the GTSRB (the third and fourth places were human 

classifiers) with a recognition rate of 98.42%.  
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I. Introduction 

Automatic traffic sign identification has many practical 

applications, such as traffic sign regulation, driver assistance 

and automated intelligent driving, and has been a challenging 

and active research topic in computer vision in the last years. 

However, the identification of traffic signs with large 

variations in visual appearance—due to deterioration, 

illumination changes, partial occlusions, rotation, weather 

conditions, etc.—remains still an interesting machine 

learning and pattern recognition problem. 

The problem of traffic sign identification can be formulated 

as follows: given an image of a scene, try and identify one or 

more traffic signs in the scene using a priori information 

about the shape, color or features present in the traffic signs. 

The current solutions in the literature typically involve 

segmentation of traffic signs from the scenes (traffic sign 

detection), feature extraction from the traffic signs, and 

recognition. In this paper, we examined the recognition part 

of the identification problem only. 

Traffic sign recognition is a multi-class classification 

problem with unbalanced class frequencies. The challenge 

lies in the fact that, even though there is a wide range of 

variations between classes in terms of color, shape and 

presence of pictograms or text, there exist classes very similar 

to each other (see Figure 1). 

 

 
 

Figure 1: Samples of very similar traffic sign classes. 

 

In this paper, we present two biologically inspired 

approaches to traffic sign recognition: one based on Virtual 

Generalizing Random Access Memory Weightless Neural 

Networks (VG-RAM WNN [1]) and the other based on the 

Wilkes, Stonham and Aleksander Recognition Device 

(WiSARD [2]). Both approaches employ the same 

architecture, which models the transformations suffered by 

the images captured by the eyes from the retina to the primary 

visual cortex (V1) of the mammalian brain.  

We developed systems for traffic sign recognition using 

both approaches and evaluated their performances on the 

German Traffic Sign Recognition Benchmark (GTSRB) 

(http://benchmark.ini.rub.de) [3, 4].  Our system based on 

VG-RAM neurons achieved a performance significantly 

better than the one based on WiSARD neurons and was 

ranked fifth in the GTSRB (the third and fourth places were 

human classifiers) with a recognition rate of 98.42%.  

This paper is organized as follows. After this introduction, 

in Section II, we present related work. In Section III, we 

briefly discuss the mammalian brain’s mapping from the 

http://benchmark.ini.rub.de/
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retina to V1. In Section IV, we present both types of WNN 

neurons examined and the biologically inspired neural 

architecture for traffic sign recognition we developed. In 

Section V, we describe our experimental methodology and 

analyze our experimental results. Our conclusions and 

directions for future work follow in Section VI. 

II. Related Work  

Many methods have been proposed in the literature for 

traffic sign recognition (see overviews in [5, 6, 7]). These 

methods can be grouped in three main categories, depending 

on the main attributes used in the recognition process, namely 

color, shape and other features.  

Color-based methods perform color segmentation in order 

to detect and classify (recognize) image regions into specific 

types of traffic signs [8]. Earlier techniques used adaptive 

thresholding [9] or fixed color thresholding [10] to identify 

traffic sign pixels. Other approaches used color indexing and 

region growing [11], fuzzy logic [12] or color distance 

transform [13] to determine the borders of the traffic sign and 

the corresponding pictograms. However, the efficiency of 

color-based methods is usually affected by outdoor 

illumination. This can be reduced by converting the RGB 

image to the Hue-Saturation-Intensity (HSI) or 

Hue-Saturation-Value (HSV) spaces, which are, to some 

extent, invariant to changes in illumination conditions [14]. 

Shape-based methods are more robust to changes in 

illumination conditions, if compared to color-based methods.  

Most shape-based approaches first apply robust edge 

detection to an input image and, thereafter, the result is 

grouped or compared against relevant geometrical shapes. 

Many techniques can be used for classifying edges into 

geometrical shapes corresponding to specific traffic signs: 

distance transform matching [15], hierarchical spatial feature 

matching [16], similarity detection [9], Hough transform 

[17], and template matching [18]. Alternatively, radial 

symmetry [19] can be employed to detect regular shapes like 

triangles, squares and octagons in the images, which can be 

later classified as a specific traffic sign according to its shape.  

For many reasons—such as changes in illumination, the 

appearance of traffic signs in cluttered scenes, imperfect 

shape of signs, as well as differences in scale and size of 

traffic signs—, the detection and recognition of traffic signs is 

a challenging problem for methods based only on color and 

shape. Feature-based methods rely on special features 

detected in the images that are invariant with respect to 

viewing and environmental conditions (e.g. color SIFT [20], 

Haar-like features [21], HOG features [22]).  These features 

are classified into specific traffic signs using genetic 

algorithms [23], histographic recognition [24], decision trees 

[16], nearest neighbor method [25], support vector machines 

[26, 27], AdaBoost methods [28], neural networks [29, 30], 

random forest of trees and kd-trees [31], and Virtual 

Generalizing Random Access Memory Weightless Neural 

Networks (VG-RAM WNN [32]). 

In this paper, we evaluate the performance of two WNN 

systems for traffic sign recognition: one based on VG-RAM 

neurons [1] and the other based on WiSARD neurons [2]. 

WNN are effective machine learning tools that offer simple 

implementation and fast training and test. Our experimental 

evaluation shows that VG-RAM neurons outperform 

WiSARD neurons on the German Traffic Sign Recognition 

Benchmark (GTSRB). 

III. Mapping from the Retina to V1 

The images captured by the eyes are transformed into 

electrical impulses by the retina and, through the optic nerve, 

are projected into the primary visual cortex (V1) and other 

areas of the mammalian brain [33]. The neural projection 

from the retina to V1 follows a retinotopic mapping, i.e., 

neighboring regions in the retina are projected onto 

neighboring regions of the V1 [34].  

Figure 2 shows how an image containing concentric circles 

is projected to V1 of the macaque monkey [34]. As Figure 2 

shows, circles 1, 2 and 3 in the left image become 

approximately straight lines in V1, and the regions 

circumscribed by the inner circles in the left image occupy a 

much larger area in V1. This mapping from the retina to V1 

follows a log-polar function. 

 

 
 

Figure 2: Retinotopic mapping of an image from the 

retina to V1 [34]. 

 

Figure 3 shows the log-polar transform of an image, 

centered at the point (xc, yc)—this point corresponds to the 

fovea of the model. The fovea is the central region of the 

retina, has the highest density of receptors and, thus, affords 

the greatest visual acuity [33]. Note that the circle (in red) in 

the left image of Figure 3 becomes a straight line in the right 

image, and the regions around the circle’s center (the fovea of 

the model) in the left image occupy a much larger area in the 

right image. The mathematical modeling of the log-polar 

transform commonly used in the literature is given by: 
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In this paper, we did not employ the log-polar transform 

exactly as shown above, but a variant that was created to 

emulate more precisely the mapping from the retina to V1. 

Figure 4 shows this variant of the log-polar transform.  
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As Figure 4 shows, neighboring regions in the image 

around the circle’s center (the fovea of the model) are also 

neighbors in the log-polar transform (retinotopy), as occurs in 

V1. This does not occur in the transform depicted in Figure 3. 

 

 
Figure 3: Log-polar transform. 

 

 
 

Figure 4: Our variant of the log-polar transform. 

 

IV. Traffic Sign Recognition with WiSARD and  

VG-RAM WNN 

A. WiSARD WNN 

RAM-based neural networks, also known as n-tuple 

classifiers or weightless neural networks, do not store 

knowledge in their connections but in Random Access 

Memories (RAM) inside the network’s nodes, or neurons. 

These neurons operate with binary input values and use RAM 

as lookup tables: the synapses of each neuron collect a vector 

of bits from the network’s inputs that is used as the RAM 

address, and the value stored at this address is the neuron’s 

output. Training can be made in one shot and basically 

consists of storing the desired output in the address associated 

with the neuron input vector [35]. 

In spite of their remarkable simplicity, RAM-based neural 

networks are very effective as pattern recognition tools, 

offering fast training and test, in addition to easy 

implementation [1]. However, if the network input is too 

large, the memory size becomes prohibitive, since it must be 

equal to 2n, where n is the input size.  

The WiSARD proponents [2] tackled this problem by 

dividing the n-sized input into m segments, each one 

addressing a RAM memory module of size 2n/m, as shown in 

Figure 5(a). 

As Figure 5(a) shows, in a WiSARD WNN, each segment 

of the n-sized input is used to select one position of a RAM 

memory module of size 2n/m; the WiSARD output is the most 

voted output by the m modules. Thanks to this organization, 

the total amount of memory required is reduced from 2n to m × 

2n/m. 
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(c) 

 

Figure 5: WiSARD WNN. (a) General architecture. (b) 

Training. (c) Testing. 

 

Figure 5(b) and (c) show a training and a testing instance of 

a WiSARD neuron, respectively, where n/m = 3. As these 

figures show, in this case (n/m = 3), one needs three bits to 

address each module. During training (Figure 5(b)), a n-sized 

training input pattern (101011…000) is divided by m and 

each n/m-sized subpattern (101, 011, …, 010) is used to 

address a RAM position of the corresponding RAM module. 

The addressed position in each RAM module stores the output 

pattern (X) associated with the input pattern.  
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It is important to note that, if the n/m value is too small (say 

3 or 4), depending on the number of training patterns 

collisions may occur, i.e., several input-output pairs may 

address the same RAM module’s memory position, hurting 

learning performance. Therefore, the n/m value should be 

chosen taking into consideration the number of input-output 

pairs in the learning set. Please refer to [36] for an in depth 

analysis in the context of nearest neighbor search on binary 

codes. 

During test (Figure 5(b)), the n-sized input test pattern 

(101011…010) is also divided by m (101, 011, …, 010) and 

each n/m-sized input subpattern is used to address a RAM 

position of the corresponding RAM module. The neuron’s 

output is given by the output pattern (X) with the largest count 

(2). If a tie occurs, the neuron’s output is chosen randomly 

among the tied output patterns. 

B. VG-RAM WNN 

Virtual Generalizing Random Access Memory (VG-RAM) 

Weightless Neural Networks (WNN) are RAM-based neural 

networks that only require memory capacity to store the data 

related to the training set [37]. In the neurons of these 

networks, the memory stores the input-output pairs shown 

during training, instead of only the output. In the test phase, 

each neuron searches associatively its memory by comparing 

the input presented to the network with all inputs in the 

input-output pairs learned. The output of each VG-RAM 

WNN neuron is taken from the pair whose input is nearest to 

the input presented—the distance function employed by 

VG-RAM WNN neurons is the Hamming distance. If there is 

more than one pair at the same minimum distance from the 

input presented, the neuron’s output is chosen randomly 

among these pairs. 

 

Lookup Table X1 X2 X3 Y 

entry #1 1 1 0 label 1 

entry #2 0 0 1 label 2 

entry #3 0 1 0 label 3 

 ↑ ↑ ↑ ↓ 

input 1 0 1 label 2 

 

Figure 6: VG-RAM WNN neuron’s lookup table. 

 

Figure 6 shows the lookup table of a VG-RAM WNN 

neuron with three synapses (X1, X2 and X3). This lookup table 

contains three entries (input-output pairs), which were stored 

during the training phase (entry #1, entry #2 and entry #3). 

During the test phase, when an input vector (input) is 

presented to the network, the VG-RAM WNN test algorithm 

calculates the distance between this input vector and each 

input of the input-output pairs stored in the neuron’s lookup 

table. In the example of Figure 6, the Hamming distance from 

the input to entry #1 is two, because both X2 and X3 bits do not 

match the input vector. The distance to entry #2 is one, 

because X1 is the only non-matching bit. The distance to entry 

#3 is three, as the reader may easily verify. Hence, for this 

input vector, the algorithm evaluates the neuron’s output, Y, 

as label 2, since it is the output value stored in entry #2. 

C. WNN Architecture for Traffic Sign Recognition 

Our WNN architecture for traffic sign recognition has a 

single two-dimensional array of m  n neurons, N, where each 

neuron, ni,j, has a set of synapses, W = (w1,w2,...w|W|), which 

are connected to the network’s two-dimensional input, Φ, of u 

 v pixels, φk,l (Figure 7). The neurons, ni,j (Figure 7), can be 

WiSARD neurons, as shown in Figure 5, or VG-RAM WNN 

neurons, as shown in Figure 6. The mapping of the elements 

of Φ onto the center of the receptive field of each neuron of N 

follows a log-polar function, which models the mapping from 

the retina to V1 (Section III). 
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Figure 7: Schematic diagram of our WNN architecture 

for traffic sign recognition. 

 

The synaptic interconnection pattern of each neuron ni,j 

(which consubstantiates its receptive field), Ωi,j,σ(W), follows 

a two-dimensional Normal distribution with variance 2 

centered at 
lk  , , where the coordinates k and l of Φ are 

given by the inverse log-polar function of the coordinates i 

and j of N; i.e., the distribution of coordinates k and l of the 

pixels of Φ to which ni,j connects via W follow the probability 

density functions: 
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where  is a parameter of the architecture, and the 

coordinates k and l of the pixel of Φ where the Normal 

distribution is centered at are calculated by: 
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where  is the log factor of the log-polar function and is 

also a parameter of the architecture. 

This synaptic interconnection pattern mimics that observed 

in many classes of biological neurons [33]. It is randomly 

created when the network is built and does not change 

afterwards; furthermore, although random, it is the same for 

all neurons.  

WNN synapses can only get a single bit from the network 

input, Φ. Thus, in order to allow our WNN to deal with 

images, in which a pixel may assume a range of different 

values, we use minchinton cells [38]. In the proposed WNN 

architecture, each neuron’s synapse, wt, forms a minchinton 

cell with the next, wt+1 (w|W| forms a minchinton cell with w1). 

The type of the minchinton cell we have used returns 1 (one) 

if the synapse wt of the cell is connected to an input element, 

φk,l, whose value is larger than the value of the element φr,s to 

which the synapse wt+1 is connected, i.e., φk,l > φr,s;  otherwise, 

it returns zero (see the synapses w1 and w2 of the neuron n1,1 of 

Figure 7). 

The input traffic sign images, I, of    pixels (Figure 

8(a)), are transformed before being copied to Φ. They are first 

equalized by the Contrast-Limited Adaptive Histogram 

Equalization (CLAHE) [39] for improving the contrast 

(Figure 8(b)). They are also cropped to keep only the region of 

interest (traffic sign region) using the GTSRB ground truth 

bounding box (Figure 8(c)). Following, they are translated to 

try and bring the region of interest’s center closer to the input 

image’s center (Figure 8(d)). The distance (in pixels) and the 

direction (right, left, up, or down) of the translation are 

chosen randomly. After that, they are scaled to fit into Φ 

(Figure 8(e)) and filtered by a Gaussian filter to smooth out 

artifacts produced by the transformations (Figure 8(f)). 

Finally, each transformed (color) image is split into its three 

RGB components, which yields three separate grayscale 

images representing the red (Figure 8(g)), green (Figure 8(h)) 

and blue color channels (Figure 8(i)). We use a separate 

neural network for each color channel. This RGB image 

decomposition helps the system discriminate traffic sign 

classes of different colors. 

Even after cropping the input traffic sign images using the 

ground truth bounding box, they still present part of the 

background scene (Figure 8(c)). This impacts negatively the 

WNN performance because the neurons’ synapses connected 

to the background regions would collect non-relevant 

information, which could generate ambiguous classification 

results. To minimize this effect, we assigned weights to the 

neurons’ output. Higher weights are attributed to the output of 

neurons monitoring regions near the image center, while 

lower ones are assigned to the output of neurons monitoring 

regions near the image borders, since background regions 

typically appear on image corners. The weights of neurons’ 

output in each row of the array of m × n neurons, N, follow a 

one-dimensional Normal distribution with variance 2
w  and 

mean m/2, where w is a parameter of the architecture. The 

same weight is attributed to all neurons’ output in the same 

column of N. Figure 9 shows the distribution of weights of the 

neurons’ output in N, where colors varying from black to 

white correspond to increasing weights. 

During training, the input traffic sign image is 

transformed, i.e., equalized, cropped, translated, scaled, 

filtered and split into its three RGB components. The pixels of 

the red image component are copied to the input Φ of the first 

of the three networks—the red network—and all neurons’ 

outputs are set to the value of the label (class identifier) 

associated with the image. All neurons are then trained to 

output this label with this input image. This procedure is 

repeated for the green and blue networks and, likewise, for all 

traffic sign images in the training dataset. 

 

  
(a) 

 
(b) 

  
(c) 

 
(d) 

  
(e) 

 
(f) 

   
(g) (h) (i) 

 

Figure 8: Traffic sign image and its preprocessing. (a) 

Original image; (b) equalized image; (c) cropped image; 

(d) translated image; (e) scaled image; (f) filtered image; 

and  image split into its three RGB components: (g) red, 

(h) green and (i) blue color channels. 
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Figure 9: Distribution of the weights of neurons’ output in 

N. 

 

During testing, the input traffic sign image is also 

transformed and split into its three RGB components, and the 

pixels of the red image component are copied to the input Φ of 

the red network. All neurons’ outputs are then computed. 

After that, the number of votes to each label is calculated as 

the sum of the weights associated with the neurons outputting 

that label, and the labels are ranked by the number of 

weighted votes. The degree of belief of the system that (the red 

component of) the input image belongs to the class identified 

by the first ranked label is estimated by the relative difference 

between the number of votes received by the first and second 

ranked labels, i.e., the difference between the number of votes 

received by the first and second ranked labels divided by the 

number of votes received by the first ranked label. This 

procedure is repeated in the green and blue networks. The 

system’s output is given by the label with the largest degree of 

belief among the three top ranked labels for the red, green and 

blue components of the input image. 

V. Experimental Evaluation 

A. Experimental Methodology 

1) Dataset 

To evaluate the performance of our approaches for traffic 

sign recognition based on WNN, we used the German Traffic 

Sign Recognition Benchmark (GTSRB) 

(http://benchmark.ini.rub.de) [3, 4]. The GTSRB consists of 

51,839 images of German traffic signs classified into 43 

classes. These images contain a border of about 10% around 

the actual traffic sign (at least 5 pixels) and the traffic sign is 

not necessarily centered within the image; a more precise 

ground truth bounding box of the traffic sign is part of the 

provided annotations. Image sizes vary between 15×15 and 

250×250 pixels. The GTSRB is divided into a training 

dataset, which contains 39,209 images, and a test dataset, 

with 12,630 images. Figure 10 shows representatives of the 

43 traffic sign classes, which were selected randomly from the 

GTSRB training dataset. 

2) Parameters Search Space 

For tuning the parameters of our approaches for traffic sign 

recognition based on WNN, we generated a training subset 

and a validation subset, composed respectively of 860 and 430 

images randomly selected from the GRSRB training dataset. 

We trained the networks with the images of the training 

subset and evaluated their performance in terms of the 

recognition rate (i.e., the percentage of correctly recognized 

traffic sign images) on the validation subset, while varying 

their parameters.  

The WNN architecture used in both approaches we  studied 

has six parameters (Section IV.C): (i) the number of neurons, 

m  n; (ii) the number of synapses per neuron, |W|; (iii) the 

size of the network input, u  v; (iv) the standard deviation, σ, 

of the two-dimensional Normal distribution followed by the 

synaptic interconnection pattern of the neurons, Ω; (v) the 

concentration factor, , of the log-polar function that maps Φ 

onto N; and (vi) the standard deviation, σw, of the 

one-dimensional Normal distribution followed by the weights 

of the neurons’ output.  

We tested our WNN approaches with: (i) number of 

neurons equal to 5 × 3, 9 × 5, 18 × 10, 34 × 18, 51 × 27 and 68 

× 36; (ii) number of synapses per neuron equal to 8, 16, 32, 

64, 128 and 256; (iii) size of the network input equal to 70 × 

70 (we did not vary the size of the network input to reduce the 

parameter search space); (iv) σ equal to 1, 3, 5, 7 and 9; (v)  

equal to 2, 4, 6, 8, and 10; and (vi) σw equal to 2, 2.5, and 3.  

3) WiSARD Traffic Sign Recognition System Tuning 

Figure 11 presents the results of the experiments we carried 

out to tune the parameters of our WiSARD WNN. In the 

graphs of Figure 11, the x-axis is the number of neurons and 

the y-axis is the recognition rate; please note that the y-axis 

scale changes from one graph to another for better 

visualization. In the legends of the graphs, the first number 

denotes the number of synapses, the second σ, the third ,  

and the fourth  σw.    

As Figure 11(a) shows, the performance of our WiSARD 

system improves as the number of neurons increase; the 

performance also improves with the number of synapses per 

neuron, but reaches a plateau at about 128 synapses. Actually, 

with 128 synapses or more, even with a very little amount of 

neurons (5 × 3) the performance is very high (about 96%). As 

we are interested in finding a set of parameters that allows  the 

highest performance but with a reasonable sized architecture, 

we selected 256 as the number of synapses for the following (a 

higher number of synapses would not improve the 

performance). 

The graph of Figure 11(b) shows the impact of the standard 

deviation, σ, of the two-dimensional Normal distribution 

followed by the synaptic interconnection pattern of the 

neurons, Ω, on the performance of our WiSARD system. As 

the graph shows, the system’s performance increases with σ, 

reaching a plateau at about 5; the highest performance is 

achieved with σ equal to 7. Figure 11(c) shows the impact of 

the concentration factor, , of the log-polar function that 

maps Φ onto N, on the WiSARD system’s performance. As 

the graph in Figure 11(c) shows, in the range of values 

examined, this parameter does not affect the system’s 

performance much (note the y-axis scale). We selected  

equal to 4. Finally, in Figure 11(d), we present the impact of 

the standard deviation, σw, of the one-dimensional Normal 

distribution followed by the weights of the neurons’ output on 

the WiSARD system’s performance. Again, this parameter 

does not affect the performance much; we select σw equal to 
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2.5. The highest performance achieved with the WiSARD 

system was 98.13%, with m  n = 18  10, |W| = 256, σ = 7,  

= 4 and σw = 2.5. 

4) VG-RAM WNN Traffic Sign Recognition System 

Tuning 

Figure 12 presents the results of the experiments we carried 

out to tune the parameters of our VG-RAM WNN system. The 

graphs of Figure 12(a-d) are equivalent to those of Figure 

11(a-d) and allow examining the effect of the various 

parameters of our neural architecture on the VG-RAM WNN 

system’s performance.  

As the graphs of Figure 12(a-d) show, an in a way similar 

to the WiSARD system, the performance of the VG-RAM 

WNN increases with the number of neurons, the number of 

synapses, and σ, and it is not much affected by  and σw. The 

highest performance achieved with the VG-RAM WNN 

system was 99.53%, with m  n = 51  27, |W| = 64, σ = 7,  

= 2 and σw = 2.5. Again, it is important to note that a much 

smaller architecture (m  n = 5  3) can achieve a very good 

performance (about 97%, see Figure 12(d)). 
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Figure 10: Representatives of the 43 traffic sign classes in the GTSRB. 
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Figure 11: Parameter tuning of our WiSARD WNN. 
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Figure 12: Parameter tuning of our VG-RAM WNN. 
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B. Experimental Results 

For evaluating the performance of our approaches to traffic 

sign recognition based on WNN, we set their parameters with 

the tuned values (WiSARD: 18 × 10 neurons, 256 synapses,   

= 7,  = 4, and w = 2.5; VG-RAM: 51 × 27 neurons, 64 

synapses,   = 7,  = 2, and w = 2.5), trained them with the 

images in the GTSRB training dataset, and evaluated their 

performance in terms of recognition rate on the GTSRB test 

dataset. We submitted the results of both the WiSARD and 

VG-RAM WNN to the GTSRB website on March 20th 2013. 

Our WiSARD WNN was ranked ninth in the GTSRB with a 

recognition rate of 94.74%, while our VG-RAM WNN 

achieved a higher performance, being ranked fifth in the 

GTSRB with a recognition rate of 98.42%. It is important to 

note that the third and fourth places were human classifiers. 

Figure 13 show the results of these submissions for the 

WiSARD and VG-RAM WNN systems. 

 

 
 

Figure 13: Result of the submission of our WiSARD and 

VG-RAM WNN’s results to GTSRB on March 20th 2013. 

VI. Conclusions and Future Work 

In this paper, we present two biologically inspired 

approaches to traffic sign recognition based on WNN: one 

using VG-RAM neurons and the other using WiSARD 

neurons. We evaluated the performance of both approaches 

on the German Traffic Sign Recognition Benchmark 

(GTSRB).  Our system based on VG-RAM neurons 

outperformed the one based on WiSARD neurons and was 

ranked fifth in the GTSRB (the third and fourth places were 

human classifiers) with a recognition rate of 98.42%. 

As directions for future work, we plan to evaluate the 

performance of our VG-RAM WNN system on traffic signs of 

Brazil’s road environment, which we expect will be more 

challenging, and the real time performance of both the 

VG-RAM WNN system and the WiSARD system. We believe 

that the systems’ performances can be improved further by 

using Bayesian inference over several images of the same 

traffic sign acquired in sequence, as would be possible in a 

real time system. 
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