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Abstract

Spiking Neural P (SN P) system characterizes the
movement of spikes among the neurons. Spikes have
a similarity with tokens in Petri net where tokens
(like spikes) are moved through net according to
specific rules. This paper proposes the concept of
spiking Petri nets, which are isomorphic to spiking
neural P systems. It also gives algorithms to con-
struct spiking Petri net for SN P system and vice
versa. The Spiking Petri net combines the mod-
eling capabilities of coloured and timed Petri net
concepts with the new orientation of SN P system.
Examples are given illustrating the way in which
the spiking Petri net can be employed to simulate
the behaviour of SN P system.
Key words: SN P System, Spiking Petri net,
Membrane Computing, Modeling. +

1 Introduction

Biologically inspired computing which is a branch of
natural computing is the field of investigation that
draws upon metaphors or theoretical models of bi-
ological systems in order to design computational
tools or systems for solving complex problems. It
is motivated by the need to identify alternative me-
dia for computing other than silicon. Researchers
are now trying to design new computers based on
molecules, such as membranes (P Systems), DNA,
RNA or Quantum Theory. If biology is such a rich
source of inspiration for informatics, then the brain
is the gold mine of this intellectual enterprise. Brain
is composed of 1011 to 1012 individual neurons. A

neuron consists of synapses, a soma, dendrites, an
axon, an axon hillock and axon terminals.

Biological neurons use short and sudden increases
in voltage to send information. A neuron receives
and sends small electrical pulses usually called
spikes from other neurons through its dendrites. A
spike is also called an action potential or a nerve
impulse. The spikes are stored and processed in the
cell body called soma. dendrites are thin numerous
bushy extensions of the cell. They receive spikes
from the synapses and carry them to soma. When
the weight(number of spikes) gets bigger than a par-
ticular value, called the threshold, associated with
axon hillock, a neuron fires; that is, it emits an out-
put signal called a spike through the axon terminals.
Axon is a thin and long channel that carries spikes
from the axon hillock to the axon terminals. These
axon terminals are the input to other neurons.

Spikes cannot just cross the gap between one neu-
ron and the other. They have to be handled by the
most complicated part of the neuron: the synapse,
connection between the dendrites of a neuron and
the axon terminals from the other neurons. Neurons
send out erratic sequences of spikes, or spike-trains,
which alter dramatically in frequency over a short
period of time. Neurons have to use spatial and
temporal information of incoming spike patterns to
encode their message to other neurons. There are
many different schemes for the use of spike timing
information in neural computation.

A neuron is a very powerful cell. They are intercon-
nected with each other and cooperate to efficiently
process incoming signals and decide on actions. A
typical neuron is able to receive thousands of spikes
and transmit thousands of spikes concurrently. The
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architecture, size, and capabilities of these cells have
created a tremendous research area recently. The
functioning of the neurons is well organised, hierar-
chical, and parallel.

Neuroscience, along with information and math-
ematical sciences, has developed a variety of the-
oretical and computational models to model com-
plex brain functions. Along with this development,
computational models that adopt principles from
the nervous system have been developed to become
powerful tools for learning from data and general-
ization. With the recent advancements of genetic
research, more information is becoming available
about the interaction between neurons. It is well
accepted that brain functions can be better under-
stood if there is a computational model that rep-
resents this neural information. Spiking Neural P
system (SN P systems, for short) is a complex math-
ematical model representing the concurrent activi-
ties of spiking neurons. It was introduced by Gh.
Paun et al.[5] to incorporate membrane computing
ideas specific to spiking neurons in a mathemati-
cal way. SN P system captures the fact that most
of the neural impulses are almost identical electri-
cal signals of a given voltage. A sequence of such
impulses, which occur at regular or irregular inter-
vals, is called a spike train that is a useful means to
encode information.

In order to give an accurate description of the spik-
ing neural net architecture[9] a model has to be
formulated which provides the structure and be-
haviour of the spiking neural net. The model must
serve as the basis for translating brain features into
a computer system. It is natural to model this
highly parallel system of neurons with a Petri net, as
they provide formalism to represent concurrent and
parallel events[8]. The structural and behavioural
properties of neuron were studied using neural Petri
nets[6]. The neural net architecture was described
with Timed Neural Petri nets[7] that considered
various chemical changes in the neurons. Similarly
spiking neural concept was described in a mathe-
matical way using SN P systems. They have a direct
(pictorial) similarity with Petri nets, where tokens
(like spikes) are moved through the net according to
specific rules[2] and Petri nets provide simple graph-

ical representation and can be simulated to analyze
the working of the system using appropriate Petri
net tool. To complement the functional characteri-
sation of the behaviour of SN P systems, we intro-
duced a translation of SN P systems into Petri nets.
In this way, using the notations and tools developed
for Petri nets, one can describe what is actually go-
ing on during a computation of a SN P system. It is
worth noting that as far as the rules of each neuron
is concerned, SN P systems are highly concurrent
systems and one of the core features of Petri nets
is that they support and analyse concurrency in its
most fundamental fashion. This paper describes a
methodology to develop a Petri net model of a sys-
tem, by deriving a form of Petri nets called as Spik-
ing Petri nets from SN P systems that use only one
object(spike).

2 Spiking Neural P System

SN P system contains one-membrane cells (called
neurons) which can hold any number of spikes;
each neuron fires in specified conditions (after
collecting a specified number of spikes, which are
accumulated, added one after another) and then
sends one spike along its axon; this spike passes to
all neurons connected by a synapse to the spiking
neuron (hence it is replicated into as many copies
as many target neurons exist); the rules for spiking
should take into account all spikes present in a
neuron not only part of them; not all spikes present
in a neuron are consumed in this way; after getting
fired and before sending the spike to its synapses,
the neuron is idle (biology calls this the refractory
period) and cannot receive spikes. Between the
moment when a neuron fires and the moment when
it spikes, each neuron needs a time interval called
timed delay. One of the neurons is considered as
the output one, and its spikes provide the output
of the computation. There are also rules used for
“forgetting” some spikes, rules that just remove a
specified number of spikes from a neuron.

Definition 2.1 Mathematically, we represent
a spiking neural P system (SN P system), of degree
m ≥ 1, in the form

Proceedings of the International Workshop on Machine Intelligence Research (MIR Day, GHRCE- Nagpur) 
© 2009 MIR Labs 

14



Π=(O, σ1, σ2, σ3 ,. . . , σm , syn , i0), where

1. O = {a} is the singleton alphabet (a is called
spike) ;

2. σ1, σ2, σ3 ,. . . , σm are neurons, of the form

σi=(ni ,Ri) , 1 ≤i≤m,

where

a) ni≥0 is the initial number of spikes con-
tained by the cell;

b) Ri is a finite set of rules of the following
two forms:

(1) E / ar−→a;t, where E is a regular
expression over O, r ≥1, and t≥0;
Number of spikes present in the neu-
ron is described by the regular expres-
sion E, r spikes are consumed and it
produces a spike, which will be sent
to other neurons after t time units

(2) as−→λ, for some s ≥ 1, with the re-
striction that as /∈ L(E ) for any rule
E/ar−→a;t of type (1) from Ri;

3. syn ⊆ { 1, 2, 3, . . . , m} × { 1, 2, 3, . . . , m}
with (i, i) /∈ syn for 1≤ i ≤m (synapses among
cells);

4. i0∈{ 1, 2, 3, . . . , m} indicates the output neu-
ron.

The rules of type E / ar−→a;t are spiking rules,
and they are possible only if the neuron contains
n spikes such that an ∈ L(E ) and n≥r. If E=φ
then rule is applied only if the neuron contains ex-
actly r spikes. When neuron σi spikes, its spike is
replicated in such a way that one spike is sent to all
neurons σj such that (i, j ) ∈ syn, and σj is open
at that moment. If a neuron σi fires and either it
has no outgoing synapse, or all neurons σj such that
(i, j ) ∈ syn are closed, then the spike of neuron σi

is lost; the firing is allowed, it takes place, but it
produces no spike.

The rules of type as−→λ are forgetting rules; s
spikes are simply removed (“forgotten”) when ap-
plying. Like in the case of spiking rules, the left

hand side of a forgetting rule must “cover” the con-
tents of the neuron, that is, as−→λ is applied only
if the neuron contains exactly s spikes.

A global clock is assumed in SN P system and in
each time unit each neuron which can use a rule
should do it (the system is synchronized), but the
work of the system is sequential locally: only (at
most) one rule is used in each neuron. One of the
neurons is considered to be the output neuron,
and its spikes are also sent to the environment.
The moments of time when a spike is emitted
by the output neuron are marked with 1; the
other moments are marked with 0. This binary
sequence is called the spike train of the system
it might be infinite if the computation does not
stop. Many kinds of output can be associated with
a computation in an SN P system. This paper
considers the distance between first two spikes in
the spike train as the value computed by an SN P
system.

Example 2.1 Consider spiking neural P sys-
tem given in Figure.1 and formally it is denoted as
Π=(O, σ1, σ2, σ3 , syn , 3), with
σ1 = (7, { a(aa)+/a2−→a;2} ),
σ2 = (0, { a2−→a;1}),
σ3 = (1, { a−→a;0})
syn={(1, 2), (2, 3)}.

We have three neurons, with labels 1, 2, 3; neuron
3 is the output neuron. Initially neuron 1 has 7(odd
number greater than or equal to 3) spikes covered
by the regular expression a(aa)+ and neuron 3 has
one spike and they fire in the first step. The spike
of neuron 3 exits the system, so the number of steps
from now until the next spiking of neuron 3 is the
number computed by the system. After firing, neu-
rons 3 remains empty and cannot fire until it gets
a spike. In turn neuron 2 is empty and cannot fire
until collecting exactly two spikes.

After firing, neuron 1 will be blocked for the next
two steps. In the third step it release its two spikes,
sending one spike to neuron 2, and in step 4 will
fire again. Thus neuron 1 fires in every third step,
consuming two spikes having odd number of spikes
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Figure 1: An example of an SN P system.

again. In the sixth step neuron 2 will receive sec-
ond spike and in the next step, it will fire. The
delay between firing and spiking is of one time unit
for neuron 2, hence its spike will reach neuron 3 in
eighth step and in the ninth step neuron 3 spikes
again. Therefore the distance between these two
spikes is eight, the value computed by the SN P
system.

3 Spiking Petri net

A Petri net consists of ovals representing places,
which hold tokens; rectangles representing transi-
tions and arcs connect transitions to places, which
change the distribution of the tokens.The current
state of the modeled system (the marking) is given
by the number of tokens in each place. Transitions
are active components. They model the concurrent
activities, which can occur thus changing the state
of the system. Transitions are only allowed to fire
if all the preconditions for the activity must be ful-
filled (they are enough tokens available in the input
place).

A marking μ of a Petri net is an assignment of
tokens to the places in that net. Tokens reside in
the places of the net. The number and position of

tokens in a net may change during its execution.
The vector μ = (μ1, μ2, μ3, . . ., μn) gives, for each
place in the Petri net, the number of tokens in that
place. The number of tokens in place Pi is μi, for
1 ≤i≤ n. We may also define a marking function
μ: P−→ N |P | from the set of places to a vector on
natural numbers, N = { 0, 1, 2,. . . }. This allows us
to use the notation μ(Pi) to specify the number of
tokens in place Pi. The firing of a transition results
in a next net marking or state. A reachability graph
is a graph where each node represents a Petri net
marking, with arcs connecting each marking with
all of its next markings. The reachability graph
defines a nets state space(i.e the set of reachable
states). Formally a PN with a given marking is
said to be in deadlock if and only if no transition is
enabled in the marking. A PN where no deadlock
can occur starting from a given marking is said to
be live.

In basic Petri nets, tokens have no identity and are
timeless. Therefore, it is arbitrary as to which par-
ticular tokens are to be removed without any delay
from a transitions input place in the case that the
input place contains more tokens than are needed to
enable the transition. But Petri nets described real
systems tend to be complex and extremely large.
Ordinary Petri nets are not always sufficient to rep-
resent and analyze complex industrial and other
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systems. To solve these problems many authors pro-
pose extension of the basic Petri nets. One-way to
change this semantic is to introduce the concept of
tokens with identity. The type of Petri net is called
a colored Petri net[4].

For colored Petri nets (CPNs), tokens have an as-
sociated data value. Places are then annotated to
indicate what type of values they hold, arcs indicate
which values are consumed or generated and transi-
tions can have a guard to further constrain their en-
abling. In timed extension transition is associated
with a time for which no event or firing of a to-
ken can occur until this delay time is elapsed. This
delay can be deterministic or probabilistic. Petri
nets with time extensions, combined with heuristic
search techniques, were used to model and study
scheduling problems involving manufacturing sys-
tems as well as robotic systems. In particular, timed
Petri nets can be used to analyze the dynamic be-
haviour of systems with asynchronous and concur-
rent processing properties. The timed Petri net has
been shown to be a useful tool for the performance
evaluation of systems where time is a factor in the
decision-making process. The bibliography of Petri
nets[3] contains entries dealing with Petri net the-
ory and applications. High level Petri nets(coloured
timed extensions etc.) were also used in the model-
ing, analysis, simulation of the behavior of biologi-
cal systems.

Biological spiking neurons have been well studied
over the course of the previous century and much
has been discovered about the details of action and
membrane potential generation. Both spiking itself
and the refractory period are thus needed for com-
munications between neurons. However, the refrac-
tory period is also an important variable that cre-
ates different spiking behaviours in different neu-
rons and also serves an important function in the
signal processing performed in brain.

Spiking neural netwoks were mathematically
represented using SN P system. In this paper we
introduce spiking Petri net, which is an extension
of the coloured timed Petri net to accommodate the
features of spiking neurons of SN P system. Unlike
other Petri net model, in spiking Petri net, during

the time interval between enabling and firing of
delayed transition, the input place are inactive and
do not receive tokens from other transitions. Thus
it can very well represent the refractory period in
spiking neuron. In spiking Petri net the tokens
are of single colour(character type ’a’) representing
spike in an SN P system.

Definition 3.1 A Spiking Petri net is repre-
sented by C=(P, T, A, W, Γ, G, P0, I0), where
P={P0, P1, P2, P3,. . . , Pm} is a finite set of places.
T={T1, T2, T3, . . . , Tn} is a finite set of transitions.
The immediate transitions are drawn as black bars
and delayed transitions as empty boxes.
A⊆(P×T)∪(T×P) is a finite set of arcs between
P elements and T-elements denoting input flows
P×T to and output flows T×P from transition
such that P∩T= P∩A=A∩T=φ.
W: A−→N assigns weight W (f) to elements of
f ∈A denoting the multiplicity of unary arcs
between the connecting nodes.
Γ: T−→R assigns firing delay, the time gap
between enabling and firing of a transition, Γ(Ti)
to elements of Ti ∈T.
G: Guard function that maps each transition Ti, to
an expression of type boolean, which must be true
before the transition is enabled.
P0 ∈ P indicates the output place with no outgoing
arcs and is empty in the beginning.
I0: P−→ N |P | is a one dimensional vector
(0, n1,n2,n3, . . . ,nm) of m + 1 elements where ni is
the initial number of tokens in the place Pi.
Firing rules in spiking Petri nets:

1. Transition Ti is enabled immediately if all its
input places have sufficient tokens and satisfies
the guard function.

2. Upon enabling, the input places remain in the
inactive state for the delay specified in the tran-
sition. During this interval the place neither
sends nor receives any tokens.

3. Upon firing the transition removes tokens from
the input places and deposits tokens into the
output places. After firing of the transition,
input places become active.
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Generally Petri nets are analyzed using tools to
study important behavioural properties of the sys-
tem like reachability, liveness, boundedness etc.
But here we are using spiking Petri net as a compu-
tational model and the computed value is expressed
as the time gap between the arrivals of first two to-
kens in the output place.

4 Spiking Petri Net and SN P

System

The similarities between spiking neural P system
and spiking Petri net are

1. The place in spiking Petri net corresponds to a
neuron (cell body soma) in SN P system. Like
neuron, a place is able to receive many inputs
and transmits the output through one or more
arcs. Output place in spiking Petri net corre-
sponds to environment in SN P system. The
place/transition is the storage or waiting ele-
ment of the Petri net model.

2. The arc between the place and transition rep-
resents an axon. An axon works with a thresh-
old value which is represented as spiking rules
in the neuron σi, 1 � i � m of the form

a) E / ar−→a;t. In spiking Petri net we can
represent this rule with a transition con-
necting place Pi and Pj where (i, j ) ∈ syn
, 1 � j � m and i 	= j, having weight of
the input arc as r, weight of output arc as
1 and a guard function that enables the
transition when number of tokens in the
input place is a member of Parikh set of
L(E ), language generated by the regular
expression E. t will be the delay of the
transition. If Pi is a place designating the
output neuron then Pj= P0.

b) as−→λ, the forgetting rule of an SN P
system. In spiking Petri net, we can have
an immediate transition connecting places
Pi and Pj where (i, j ) ∈ syn with weight
of the input arc as s, weight of the output
arc as 0 and a guard function enables the

transition if number of tokens in the input
place is exactly s.

3. After getting fired and before sending the spike
to its synapses, the neuron is idle (biology calls
this the refractory period) and cannot receive
spikes. The corresponding Petri net model as-
sumes that once the transition is enabled un-
til the transition fires the input place will be
in inactive state and neither it can receive to-
kens from other place nor send tokens to other
places. After the completion of firing the input
place becomes active.

4. Tokens in Petri net place correspond to spikes
in the neuron. The initial marking of the spik-
ing Petri net is (0, n1, n2, n3, . . . , nm) where ni

is the number of spikes initially present in the
neuron σi and 0 is the initial number of tokens
in the output place. The initial marking of the
Petri net corresponds to initial configuration of
SN P system.

The following algorithms makes use of these simi-
larities to construct spiking Petri net model for SN
P system and vice versa.

4.1 SN P system to Spiking Petri net

Theorem 4.1 (Petri net for SN P system)
For every SN P system Π there is an equivalent
spiking Petri net.

Proof: Let Π=(O, σ1, σ2, σ3 ,. . . , σm , syn , i0) be
a spiking neural P system. Construct spiking Petri
net C=(P, T, A, W, Γ, G, P0, I0) equivalent to Π
using Algorithm 1.

To incorporate the features of SN P system,
Spiking Petri net model assumes that once the
transition is enabled until the transition fires the
corresponding input place will be in inactive state
and neither it can receive tokens from nor send
tokens to other places. The place becomes active
after the completion of firing.
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Input: Spiking Neural P system Π=(O, σ1, σ2, σ3 ,. . . , σm , syn , i0)
Output: Spiking Petri net C=(P, T, A, W, Γ, G, P0, I0) equivalent to Π.

Initially the output place P0 with no tokens in its place is the only place in P. For each neuron σi in Π
add place Pi to P.
Add (i0 , 0) to syn in P to connect the output neuron with environment.
for all σi = (ni; Ri) with 1 ≤ i ≤ m do

Set the number of tokes in place Pi as ni

for every rule of the form E / ar−→a;t in σi do
for every (i, j )∈ syn with 1 ≤ j ≤ m do

Add a new transition Tk to T. Insert arcs (Pi , Tk ) and (Tk , Pj) with weight r and 1
respectively into A.
Set Γ(Tk) = t.
if E 	= φ then

Add a guard function G(Tk) that enables the transition if number of tokens in the input
place is a member of Parikh set of L(E ), language generated by the regular expression
E.

else
Add a guard function G(Tk) that enables the transition if number of tokens in the input
place is exactly r.

end if
end for

end for
for every rule of the form as−→λ in σi do

for every (i, j )∈ syn with 1 ≤ j ≤ m do
Add a new transition Tk to T. Update A and W by adding arcs (Pi, Tk) and (Tk, Pj) with
weight r and 1 respectively.
Set the transition as an immediate one with Γ(Tk) = 0.
Add a guard function G(Tk) that enables the transition if number of tokens in the input
place is exactly s.

end for
end for

end for

Algorithm 1: Algorithm to construct Spiking Petri net for an SN P system
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Now we have to prove that computational power of
both the systems is same.
Each neuron in Π corresponds to a place in Petri
net. Number of spikes in each neuron σi is rep-
resented by number of tokens in each place Pi.
The words firing and spiking in SN P system are
synonymous to enabling and firing respectively in
Petri nets. Corresponding to each rule of type E/
ar−→a;t in neuron σi and (i, j ) ∈ syn, in spiking
Petri net C, we have a transition Tk with delay t,
input arc from place Pi to Tk of weight r, an output
arc from Tk to Pj with weight 1 and guard function
that enables the transition if number of tokens in
the input place is a member of Parikh set of L(E ).
If σi is an output neuron that sends spikes to en-
vironment, in the Petri net model we have place
P0 corresponding to environment and transitions
that connects the place corresponding to σi with
the place corresponding to environment(P0). Sim-
ilarly forgetting rules are mapped. In this way, we
simulate the work of neurons and synapses by using
places and transitions in Petri nets.

If the neuron σi spikes using the rule E/ ar−→a;t
or as−→λ and (i, j ) ∈ syn in Π then in the
corresponding Petri net model C, transition con-
necting the place Pi to Pj will be fired. Similarly
if the output neuron spikes and sends spikes to
environment then in Petri net C the place corre-
sponding to output place sends tokens to P0. The
sequence in which the output neuron sends tokens
to environment in Π is same as the sequence in
which the place P0 receives the tokens in C. It is
clear that the computational power of both the
systems is the same.
We describe with an examples to illustrate our
approach.

Example 4.1 Consider the pictorial represen-
tation of SN P system, in Figure. 2 reproduced
from [9]. It is formally represented as:

Π = ({a},σ1,σ2,σ3,syn,3), with

σ1 = (2,{ a2/a−→a;0, a−→λ}),

σ2 = (1,{ a−→a;0,a−→a;1 }),

σ3 = (3,{a3−→a;0,a−→a;1,a2−→λ}),

syn={(1,2),(2,1),(1,3),(2,3)}.

This SN P system works as follows. All neurons
can fire in the first step, with neuron 2 choosing
non-deterministically between its two rules. Note
that neuron 1 can fire only if it contains two spikes;
one spike is consumed, the other remains available
for the next step.

Both neurons 1 and 2 send a spike to the output
neuron 3; these two spikes are forgotten in the next
step. Neurons 1 and 2 also exchange their spikes;
thus, as long as neuron 2 uses the rule a−→a;0, the
first neuron receives one spike, thus completing the
needed two spikes for firing again.

However, at any moment, starting with the first
step of the computation, neuron 2 can choose to
use the rule a−→a;1. On the one hand, this means
that the spike of neuron 1 cannot enter neuron 2,
it only goes to neuron 3; in this way, neuron 2 will
never work again because it remains empty. On the
other hand, in the next step neuron 1 has to use its
forgetting rule a−→λ, while neuron 3 fires, using
the rule a−→a;1. Simultaneously, neuron 2 emits
its spike, but it cannot enter neuron 3 (it is closed
this moment); the spike enters neuron 1, but it is
forgotten in the next step. In this way, no spike
remains in the system. The computation ends with
the expelling of the spike from neuron 3. Because
of the waiting moment imposed by the rule a−→a;1
from neuron 3, the two spikes of this neuron cannot
be consecutive, but at least two steps must exist in
between.

Thus, we conclude that (remember that number 0
is ignored)

N2(Π) = N − {1} ∈ Spik2P3(rule3, cons3,forg2).

Where N2(Π) is set of numbers computed by
an SN P system Π, with the subscript 2 reminding
of the way the result of a computation(distance
between first two spikes) is defined, and by
Spik2Pm(rulek, consp,forgq the family of all sets
N2(Π) computed as above by spiking neural P
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Figure 2: An SN P system generating all natural numbers greater than 1

Rule in Neuron i Transition Guard Function for the Transition
a2/a−→a;0 in neuron 1 T1 G (T1): if μ(P1) =2 then true else false
a−→λ in neuron 1 T2 G (T2): if μ(P1) =1 then true else false
a−→a;0 in neuron 2 T3 G (T3): if μ(P2) =1 then true else false
a−→a;1 in neuron 2 T4 G (T4): if μ(P2) =1 then true else false
a3−→a;0 in neuron 3 T5 G (T5): if μ(P3) =3 then true else false
a2−→λ in neuron 3 T6 G (T6): if μ(P3) =2 then true else false
a−→a;1 in neuron 3 T7 G (T7): if μ(P3) =1 then true else false

Table 1: Mapping between rules in neuron and transitions in Petri net of Example 4.1

systems with at most m ≥ 1 neurons, using at
most k ≥ 1 rules in each neuron, with all spiking
rules E/ ar−→a;t having r ≤ p, and all forgetting
rules as as−→λ having s ≤ q. When one of the
parameters m; k; p; q is not bounded, then it is
replaced with ∗.
Spiking Petri net C corresponding to the SN P
system is depicted in Figure.3. Environment as
well as neurons are implemented using places and
rules inside the neuron are implemented using
transition, while synapses are implemented using
arcs. The duration between firing and spiking of
neuron is represented as a delay in the transition.
The mapping between rules in the neuron and
transitions is depicted in Table.1. μ(Pi) denotes

the number of tokens in place Pi.

The spiking Petri net C has four places, P0 corre-
sponds to environment and P1, P2, P3 correspond
neurons 1, 2 and 3 respectively. Number of tokens in
each place is same as the number of spikes in the cor-
responding neuron. At first step transitions T1, T3,
T4 and T5 corresponding to the spiking rules used
by the neurons in Π in the beginning, are enabled
with non-determinism between T3 and T4. Transi-
tion T5 deposits a token in the output place. Hence
we have to count the time until the next token is
deposited in the output place, to define the result of
computation. Transition T1 removes one token from
place P1 and deposits in places P2 and P3.Similarly
place P2 also send tokens to P1 and P3.
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Figure 3: Spiking Petri net C equivalent to SN P system in Figure.2

These tokens are consumed by transition T6 in the
next step. Places P1 and P3 also exchange their
tokens through the transitions T1 and T3; Thus as
long as transition T3 gets priority over T4, the place
P1 gets one token, thus completing the needed 2
tokens for enabling the transition T1 again.

Like in SN P system, at any moment starting with
first step of the computation, transition T4 can be
enabled. That means that token of place P1 cannot
be deposited in place P2 as it is in inactive state
for one unit of time but can be deposited in place
P3. The transitions T3 and T4 cannot be live af-
ter this marking as place P2 will never get a token.
Thus place P3 gets one token, so the transition T7

will be enabled and fired in the next step. At the
same time transitions T2 will be fired, which con-
sumes token from place P1. Now the place P1 is also
empty. Transition T7 deposits the second token in
place P0. Because there is a delay in transition T4,

the place P0 cannot get two tokens consecutively,
but requires at least two time units. It is clear that
the computational power of the Petri net model C
is equivalent to that of Π.

4.2 Spiking Petri net to SN P system

Theorem 4.2 (SN P system for spiking Petri net)
Let C=(P, T, A, W, Γ, G, P0, I0) be a spiking
Petri net with

1. Transitions having only one incoming arc and
all outgoing arcs labeled with either 0 or 1.

2. The guard functions are membership functions
that checks whether a number is in a Parikh set
of regular language over single alphabet.

3. C has only one place connected to P0.
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Input:Spiking Petri net C=(P, T, A, W, Γ, G, P0, I0)
Output:Spiking Neural P system Π=(O, σ1, σ2, σ3 ,. . . , σm , syn , i0) equivalent to C.
Set O={a}
Make the output place P0 as environment in Π. If Pk∈P is the place connected to P0 then set i0 as k.
for each place Pi 	=P0 with 1 ≤ i ≤ m do

add neuron σi = (ni; Ri) to Π
Set ni=initial number of tokens in place Pi

for each transition Tk with Pi as input place do
if weight of any outgoing arc is equal to one then

Derive regular expression E over single alphabet {a} for the Parikh set in the guard function
G(Tk)
Let r be the weight of the incoming arc (Pi,Tk)
Add spiking rule E / ar−→a;t to Ri

else
Let s be the weight of the incoming arc (Pi,Tk)
Add forgetting rule as−→λ to Ri

end if
for each output place Pj 	=P0 of Tk do

add (i, j ) to syn
end for

end for
end for

Algorithm 2: Algorithm for constructing SN P system for Spiking Petri net

Then we can have an equivalent SN P system Π for
C.

Proof: Given spiking Petri net C=(P, T, A, W, Γ,
G, P0, I0) with m + 1 places . Construct SN P
system Π=(O, σ1, σ2, σ3 ,. . . , σm , syn , i0) using
Algorithm 2.

we can prove the computational equivalence of
both systems is similar way as we proved in Theo-
rem 4.1.

If we construct the SN P system for the spiking
Petri net in Figure.3 using the Theorem 4.2 we get
back the original SN P system in Figure.2.

Conclusion

In this paper, we have introduced spiking Petri nets,
which incorporated the features of SN P system.

Also presented a methodology to derive a Spiking
Petri net model from spiking neural P system and
the other way round. Spiking Petri nets can also
represent extended SN P system where the rules in
the neuron are of the form E / ar−→ap;t, with the
meaning that when when using the rule, r spikes
are consumed and p spikes are produced(r≥p). Be-
cause p can be 0 or greater then 0, we obtain a
generalization of both spiking and forgetting rules,
while forgetting rules also have a regular expres-
sion associated with them. This rule can be imple-
mented using spiking Petri net with a transition of
delay t having input arc and output arc labeled by r
and p respectively. The guard function enables the
transition when the number of tokens in the input
place is a member of the Parikh set of L(E ). The
main idea is to generate a Petri net model for SN
P systems to allow the use of existing net analysis
techniques to study the behaviour of SN P system.
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