
An Ant Colony Optimization and Nelder-Mead Simplex Search Hybrid
Algorithm for Unconstrained Optimization

N. Arun and V. Ravi

Institute for Development and Research in Banking Technology, Castle Hills Road #1,
Masab Tank, Hyderabad, INDIA

 narun@mtech.idrbt.ac.in ; rav_padma@yahoo.com

Abstract

In this paper we hybridize ACOR, which is a meta-

heuristic for optimization of continuous functions
based on the Ant Colony Optimization framework with
Nelder-Mead Simplex Search which is a direct search
technique in a novel way and test its performance. In
this study we use ACOR to do bulk of the search and
use simplex search once the region of the global
optimum is reached. This hybrid algorithm is able to
converge faster to the global optimum for several test
functions. The tuning of the parameters of the
algorithm is also discussed.

1. Introduction

In the recent past, meta-heuristics have been
extensively employed to solve nonlinear programming
problems (NLP). The reason for this popularity is that
unlike the classical methods they can work in cases
where (i) derivative information is not available (ii) the
function being optimized has local optima (iii) the
search space is non-convex. Whenever meta-heuristics
are employed there is a trade-off between
“exploration”, which is the process of identifying
promising regions in search space and “exploitation”,
which is the process of using the promising region to
obtain solutions. Population based search techniques
are good at exploration but once they identify a
promising region of search space they take too long to
converge to the optimum. Hence several hybrid meta-
heuristics have been proposed which combine the
strengths of meta-heuristics and local search
techniques to achieve a good balance between
exploration and exploitation. In the following, we first
present a brief review of hybrid optimization
algorithms not involving Ant Colony Optimization
(ACO) and then a review of hybrid optimization
algorithms involving ACO.

In the literature, we find several optimization
algorithms which are hybrids of meta-heuristics and
local search techniques. In [1] INESA is presented,
which is a hybrid of Non-Equilibrium Simulated
Annealing (NESA) and a simplex-like heuristic. This
hybrid was applied to solve reliability optimization
problems in complex systems. In [2] a hybrid of
Genetic Algorithms (GA) and Nelder-Mead Simplex
Search (NM) is presented. This hybrid was applied to
solve benchmark test problems. In [3] a hybrid of
Simulated Annealing (SA), Tabu Search (TS) and NM
is presented. This hybrid has the property of
indentifying the global minimum together with some
local minima, which may be of interest. It was tested
on benchmark problems. A hybrid of TS and NM is
presented in [4]. It was tested on benchmark test
problems and also on a problem involving the design
of eddy current sensor for non-destructive control. In
[5] a hybrid of Differential Evolution (DE) and a
simplex like heuristic, which comprised only the
reflection property of NM, is presented. Here, the NM
part of the hybrid is invoked after DE identifies a
promising region of search space. It was applied to
solve a parameter estimation problem arising in
biochemical engineering. A hybrid of Particle Swarm
Optimization (PSO) and NM is presented in [6]. The
idea consists of allowing NM to work on the best
points in the population of PSO to quickly arrive at the
global optimum.

In the ACO based hybrid algorithms we have
Hybrid Continuous Interacting Ant Colony (HCIAC)
[7], which is based on Continuous Interacting Ant
Colony (CIAC) [8]. The CIAC algorithm introduces
the notion of “heterarchy”, which is a form of direct
communication between the ants. Apart from using the
pheromone trail, which acts as a form of indirect
communication, the direct communication between
ants in the form of “heterarchy” is also used in the
algorithm. The HCIAC is a hybrid of CIAC and NM.
Dynamic Hybrid Interacting Ant Colony (DHCIAC) is

Proceedings of the International Workshop on Machine Intelligence Research (MIR Day, GHRCE- Nagpur)
© 2009 MIR Labs

25

presented in [9], which is aimed at optimization of
dynamic functions instead of static ones.

Although CIAC and its variants have hybridized
ACO and NM, the CIAC algorithm itself is a modified
form of ACO metaphor, since it uses the notion of
“heterarchy”. ACOR [10], on the other hand is an
elegant extension of the ACO metaphor to the realm of
continuous optimization. It makes no major structural
changes to ACO and bases its search function purely
on the pheromone trail values. Hence we are motivated
to try out the hybridization of ACOR with the fast
direct search capability of NM.

2. Description of algorithms

The proposed algorithm is a hybrid of ACOR [10]
and Nelder Mead Simplex Search [11]. We describe
below, both the algorithms and then give the
description of the proposed hybrid algorithm.

2.1. ACOR algorithm

The ACOR algorithm for continuous optimization

was propsed by Socha and Dorigo [10]. It is an
extension of the original ACO algorithm [12] meant
for combinatorial optimization. In ACO for
combinatorial optimization the solution is constructed
as a sequence of solution components. The number of
solution components is finite. Each solution
component has associated with it, a “pheromone”
value which indicates the “goodness” of the solutions.
Better solutions have higher pheromone values
associated with them. The solution construction
proceeds in a probabilistic fashion using the
pheromone values. However, in continuous
optimization, the problem is that the number of
solution components is infinite and therefore a
different approach was needed. The ACOR algorithm
makes use of a solution archive (a set of solutions) to
construct probability density functions, which model
the fitness of the solutions in various regions of the
search space. The solution construction is done by
sampling these probability density functions. We use
the notation in [10] and briefly describe the algorithm
below. For a detailed explanation of the algorithm, the
reader is referred to [10].

The algorithm makes use of a set of solutions called
an archive T, which contains k solutions S1, S2, …, Sk.
f(S1), f(S2),…, f(Sk) represent the objective function
values of the solutions. Let the number of decision

variables be N. represents the ith dimension of the

lth solution. The solutions in the archive are sorted in
the descending order of their fitness values. Ties are

randomly broken. Weights are assigned to the
solutions according to the following formula

i
lS

22

2

2

)1(

2

1 kq

l

l e
qk






 (1)

q is a parameter of the algorithm. It affects the
“peakedness” of the distribution of weights. Smaller
values of q give rise to higher peakedness as opposed
to higher values of q (Fig 1). These weights are used
for selecting existing solutions which will be used for
the generation of new solutions. In this context, small
values of q cause the fittest solutions to be picked up
for generating new solutions as opposed to higher
values of q which cause almost all solutions to be
chosen with equal probability.

For each dimension a Gaussian kernel function is

used as the probability density function. A Gaussian
kernel function is a weighted sum of Gaussian
functions. It is defined as

 
 




k

l

k

l

x

i
l

l
i
ll

i i
l

i
l

exgxG
1 1

)(2

)(
2

2

2

1
)()(






 (2)

The vector of means is given by

i
k

ii SS ,,1  (3)

The standard deviation is given by


 




k

e

i
l

i
ei

l k

SS

1 1
 (4)

ξ is a parameter of the algorithm. The parameter ξ

influences the manner in which the solution archive

Proceedings of the International Workshop on Machine Intelligence Research (MIR Day, GHRCE- Nagpur)
© 2009 MIR Labs

26

will be used in the search process. If the value of ξ is
small, the new solutions will be close to the solutions
in the archive and this increases the speed of
convergence. On the other hand if the value of ξ is
large, there will be greater diversification and
convergence may be slow.

The ACOR algorithm constructs the solutions by
sampling the Gaussian kernel function. The sampling
is done in two steps. First, a solution is picked up from
the archive. This is same as selecting the Gaussian
function in the Gaussian kernel. The solution
(Gaussian function) l is chosen according to the
probability




i i

l
lP




 (5)

Then the chosen Gaussian function is sampled. This
process is repeated for each dimension. However, for
each dimension a new solution is not chosen. The
Gaussian functions corresponding to the already
selected solution are used.

Pseudo-Code for ACOR algorithm.
1: Initialize the solution archive T to random solutions.
2: repeat
3: sort the solutions in the archive in descending
 order of fitness value. Break ties randomly.
 Compute weights according to (1).
4: for each ant m in NUMANTS do
5: select a solution Sl probabilistically
 according to (5).
6: for each dimension i do
7: generate a random number Z
 having standard normal
 distribution.

8: calculate according to (4). i
l

9: i
l

i
l

i
m ZSS 

10: end for
11: end for
12: until termination criterion is met

2.2. Nelder-Mead simplex search

Nelder-Mead simplex search was proposed by
Nelder and Mead [11]. It is a heuristic technique (since
it is based on rules of thumb and provides no
guarantees) which is used for local search. It is based
on a “simplex”, which moves towards the global
optimum based on the objective function values of the
points making up the simplex.

The simplex is an n-dimensional figure. For solving
a problem with n decision variables, we construct a
simplex with (n + 1) dimensions. The simplex then
moves towards the global optimum using the following
four operations.

Pseudo-Code for Simplex Search
1: REFLECTION: Ph, Ps and Pl denote the points
with the highest, second highest and the lowest
objective function values. Let their corresponding
objective function values be fh, fs and fl. Calculate the
centroid Pc of the simplex by excluding Ph. Reflect the
highest point in the simplex about the centroid

)(hccr PPPP   (6)

α is the reflection coefficient (α > 0). We used α = 1 as

suggested in [11]. Replace Ph by Pr, if

and repeat step 1 again. If f
lrs fff 

r < fl go to step 2,
otherwise go to step 3.

2: EXPANSION: Calculate the point of expansion Pe
by searching in the direction of Pr.

)(crce PPPP   (7)

γ is the expansion coefficient (γ > 1). We used γ = 2 as
suggested in [11]. If fe < fr , replace Ph by Pe,
otherwise replace Ph by Pr . Go to step 1.

3: CONTRACTION: If , Psrh fff  r replaces

Ph. The point of contraction Pct is calculated.
Otherwise, Pr does not replace Ph and the point of
contraction is calculated directly.

)(chcct PPPP   (8)

β is the contraction coefficient (0 < β < 1). We used β

= 0.5 as suggested in [11]. If h , P ct ff  ct replaces

Ph and go to step 1. Otherwise, go to step 4.

4: SHRINKAGE: If fct > fh then we shrink the
simplex towards Pl (i.e., each point except Pl is moved
towards Pl).

)(lili PPPP   (9)

δ is the shrinkage coefficient (0 < δ < 1). We used δ =
0.5 as suggested in [11]. Go to step 1.

Proceedings of the International Workshop on Machine Intelligence Research (MIR Day, GHRCE- Nagpur)
© 2009 MIR Labs

27

2.3. Ant colony optimization-simplex search
(ACONM)

We now describe the hybrid of ACOR [10] and
Nelder-Mead Simplex Search [11], which we shall call
ACONM. The idea behind ACONM is very simple. It
is to allow ACO to do the exploration, and once the
algorithm identifies a promising region, to invoke the
NM algorithm to quickly arrive at the global optimum
(exploitation). The two important issues in the hybrid
are:

1) The changeover from ACOR to NM.
2) Creation of the initial simplex for the NM

algorithm.

2.3.1. Changeover from ACOR to NM. The point
where the algorithm shifts from ACOR to NM is a
crucial parameter of the algorithm. We used the
standard deviation between solutions in the decision
space to make this shift. The reason for choosing
standard deviation between solutions in decision space
is that, when the ACOR algorithm begins to converge
on the global optimum, the solutions in the archive lie
in the vicinity of the global optimum. They form a
neighborhood which can be used by NM to quickly
reach the global optimum. This is shown for
Bohachevsky function [13] in Figs 2 and 3.

In each iteration, the standard deviation between
solutions is calculated which we shall call η. ACO is
allowed to run while η is greater than a user specified
value ηc. Once η becomes less than ηc, we shift to
NM

, but the number of
function evaluations could also be high.

.
If the value of ηc is chosen to be a large value, then

the changeover from ACO to NM happens early. It
might result in a decrease in the number of function
evaluation because NM uses fewer function
evaluations when compared to meta-heuristics, but rate
of successful minimization may also suffer because
NM is not good at avoiding local minima. On the other
hand if the changeover is delayed, the rate of
successful minimization may be high because of
ACOR performing exploitation

Its effect on the number of function evaluations and
rate of successful minimization for Goldstein-Price
function [14] is given in Figs 4 and 5.

Proceedings of the International Workshop on Machine Intelligence Research (MIR Day, GHRCE- Nagpur)
© 2009 MIR Labs

28

2.3.1. Construction of the Initial Simplex. NM is
extremely sensitive to the initial simplex chosen. If the
points of the initial simplex are such that their
objective function values are more or less same, it
doesn’t give the algorithm much information about the
landscape of the function being minimized. This will
result in the algorithm making a large number of
function evaluations to reach the optimum. Therefore,
it is necessary to construct the initial simplex in such a
way that the points are well spaced out in terms of their
objective function values. Therefore before invoking
the NM algorithm, we sort the solutions in the archive
T according to their fitness values, and divide the
archive into (n + 1) chunks (n is the number of
decision variables) and select the first solution in each
chunk to create the initial simplex. This ensures that
there is sufficient variation in the fitness values of the
points making up the initial simplex. The effect of the
initial simplex on the performance of NM for De
Jong’s function1 [15] is shown in Fig 6.

NM is invoked after the creation of the simplex and it
runs until a specified termination criterion is met.

Pseudo-Code for ACONM.
1: Run ACOR while η > ηc
2: Sort the solutions in the archive according to their
fitness values. Divide the archive T into n + 1 chunks
and create the initial simplex by picking the first
solution from each chunk.
3. Run NM until termination criterion is met.

3. Experimental setup

The ACOR and ACONM algorithms were run on 18
test problems taken from the literature. In order to
enable a fair comparison, the bounds fixed on the
variables were same for both the algorithms.

In our experiments the standard deviation between
solutions in the decision space is used as the
termination criterion. The algorithms stops when it
becomes less than or equal to a user specified value η t
or the maximum number of iterations being exceeded.
Arbitrarily small value of η t may be chosen based on
the accuracy desired. We chose η t to be 10E-4 and the
maximum number of iterations as 1000 times the
number of dimensions.

We conducted 100 independent runs for each
algorithm on each problem. The mean number of
function evaluations and success rate over this set of
100 runs is reported. The algorithm is considered to
have successfully converged to the global optimum, if
the absolute difference between the known optimum
and the best solution found by the algorithm is less
than a user specified value which we call maxerror.
Again the user can choose an arbitrarily small value
based the requirements. We chose maxerror to be 10E-
4 for both the algorithms.

The parameters used in ACOR are presented in
Table 1. These parameters are the same as the ones
used in [10]. We didn’t resort to fine tuning of the
parameters because, our aim is to compare the
performance of ACOR with that of ACONM. The
parameters used in ACONM are presented in Table 2.
It contains the parameters of ACOR and that of NM
together with the one new parameter which determines
the point of changeover. Again the parameters of
ACOR are same as those in the original paper and the
parameters of NM are those suggested in [11]. Only
the parameter ηc was chosen by us. We chose its value
as 1. The effect of ηc on the performance of the
algorithm was detailed in 2.3.1. In case of a new
problem the user should start with a reasonably small
value like 1 and then tune it to get better performance.

The parameters shown in Tables 1 and 2 have not
been varied across different problems.

Proceedings of the International Workshop on Machine Intelligence Research (MIR Day, GHRCE- Nagpur)
© 2009 MIR Labs

29

Table 1. Parameters of ACOR

q 0.1
ξ 0.85
numants 2
K 50

Table 2. Parameters of ACONM
q 0.1
ξ 0.85
numants 2
K 50
α 1
β 2
γ 0.5
δ 0.5
ηc 1

4. Results and discussion

In order to compare ACOR and ACONM both the
algorithms were implemented in ANSI C and run on
Pentium IV machine with Linux operating system. The
results of the numerical experiments conducted are
presented in the Table 3. The simple hybrid that we
presented is based on the ACOR and the Nelder-Mead
Simplex Search. It combines the strengths of the two in
a simple way without introducing too many new
parameters. The effect of the new parameter
introduced shows that there is a trade-off between
success rate and function evaluations when setting the
point of changeover. If the changeover is done early, it
results in fewer function evaluations but with the
possibility of a lower success rate. On the other hand,
if the changeover is done late both the success rate and
number of function evaluations could be high. This
simple hybrid has performed quite well on several of
the test functions.

5. Conclusion

In this paper we have presented a simple meta-
heuristic which is a hybrid of ACOR and Nelder-Mead
Simplex Search. The hybrid algorithm makes use of
the strengths of both the algorithms to achieve better
performance. The ACOR algorithm is a powerful meta-
heuristic for global optimization. It is good at avoiding
the local optima and reaching the vicinity of the global
optimum (exploration). However, once we reach the
vicinity of the global optimum we could use a
relatively simple heuristic namely the Nelder-Mead
Simplex Search to quickly arrive at the global

optimum (exploitation). This strategy resulted in fewer
number

Table 3. Results
 ACONM ACOR

problem srate fevals srate fevals
Ackley [16] 0.79 712.62 0.81 1251.97
Bohachevsky
[13]

0.83 300.74 1.00 709.42

Branin [14] 1.00 539.23 1.00 901.72
De Jong
Function1
[15]

1.00 184.21 1.00 565.3

Easom [17] 1.00 271.79 1.00 950.80
Goldstein-
Price [14]

0.98 161.40 1.00 553.74

Griewank10
[18]

0.01 2102.00 0.28 2679.85

Hartman 3
[14]

1.00 179.90 1.00 698.18

Hartman 6
[14]

0.58 423.43 0.57 1183.54

Rosenbrock
[19]

1.00 653.11 1.00 1314.38

Schwefel [20] 0.55 1112.76 0.59 1633.45
Shekel5 [14] 0.54 569.59 0.61 1161.34
Shekel7 [14] 0.67 502.11 0.59 1059.49
Shekel10 [14] 0.66 516.96 0.66 1067.33
Shubert [21] 0.84 1559.64 0.85 1991.94
Rastrigin [22] 0.56 807.16 0.63 1388.50
Modified
Himmelblau
[23]

0.80 416.02 0.77 844.33

Zakharov [2] 1.00 226.75 1.00 631.46

of function evaluations on several functions in a suite
of 18 simple to difficult unconstrained benchmark
problems. We showed the effect of the newly
introduced parameter on the performance of the
algorithm. The simulations show that the hybrid
algorithm is able to converge to the optimum using
fewer function evaluations for several problems. This
is the significant result of the present study.

6. References

[1] V. Ravi, B. S. N. Murty and P. J. Reddy,
“Nonequilibrium Simulated Annealing-Algorithm
Applied to Reliability Optimization of Complex
Systems,” IEEE Transactions on Reliability, vol. 46,
pp. 233-239, 1997.

[2] R. Chelouah and P. Siarry, “Genetic and Nelder-
Mead algorithms hybridized for a more accurate global

Proceedings of the International Workshop on Machine Intelligence Research (MIR Day, GHRCE- Nagpur)
© 2009 MIR Labs

30

optimization of continuous multiminima functions,”
European Journal of Operational Research, vol. 148,
pp. 335-348, 2003.

[3] S. Salhi and N. M. Queen, “A Hybrid Algorithm
for Identifying Global and Local Minima when
Optimizing Functions with many Minima,” European
Journal of Operational Research, vol. 155, pp. 51-67,
2004.

[4] R. Chelouah and P. Siarry, “A hybrid method
combining continuous tabu search and Nelder-mead
simplex algorithms for the global optimization of
multiminima functions,” European Journal of
Operational Research, vol. 161, pp. 636-654, 2005.

[5] T. R. Bhat, D. Venkataramani, V. Ravi and C. V. S.
Murty, “An improved differential evolution method for
efficient parameter estimation in biofilter modeling,”
Biochemical Engineering Journal, vol. 28, pp. 167-
176, 2006.

[6] S.-K. S. Fan and E. Zahara, “A Hybrid Simplex
Search and Particle Swarm Optimization for
Unconstrained Optimization,” European Journal of
Operational Research, vol. 181, pp. 527-548, 2007.

[7] J. Dreo and P. Siarry, “Hybrid Continuous
Interacting Ant Colony Aimed at Enhanced Global
Optimization,” Algorithmic Operations Research, vol.
2, pp. 52-64, 2007.

[8] J. Dreo and P. Siarry, “Continuous Interacting Ant
Colony Algorithm Based on Dense Heterarchy,”
Future Generation Computer Systems, vol. 20, pp.
841-856, 2004.

[9] J. Dreo and P. Siarry, “An Ant Colony Algorithm
Aimed at Dynamic Continuous Optimization,” Applied
Mathematics and Computation, vol. 181, pp. 457-467,
2004.

[10] K. Socha and M. Dorigo, “Ant Colony
Optimization for continuous Domains,” European
Journal of Operational Research, vol. 185, pp. 1155-
1173, 2008.

[11] J. A. Nelder and R. Mead, “A Simplex Method for
Function Optimization,” The Computer Journal, vol. 7,
pp. 308-313, 1965.

[12] M. Dorigo and T. Stutzle, Ant Colony
Optimization. Cambridge MA: MIT press, 2004.

[13] M. E. Bohachevsky, M. E. Johnson and M. L.
Stein, “Generalized simulated annealing for function
optimization,” Technometrics, vol. 28, pp. 209-217,
1986.
[14] L. Dixon and G. Szego, Towards Global
Optimization. New York: North Holland, vol. 2, 1978.

[15] De Jong, “An analysis of the behaviour of a class
of genetic adaptive systems,” PhD thesis, University of
Michigan, 1975.

[16] R. Storn and K. Price, “Differential Evolution: A
Simple and Efficient Heuristic for Global Optimization
Over Continuous Spaces,” Journal of Global
Optimization, vol. 11, pp. 341-359, 1997.

[17] Z. Michalewicz, Genetic Algorithms + Data
Structures = Evolution Programs.
Berlin/Heidelberg/New York: Springer-Verlag, 1996.

[18] A. O. Griewank, “Generalized Descend for
Global Optimization,” Journal of Optimization Theory
and Applications, vol. 34, pp. 11-39, 1981.

[19] H. P. Schwefel, Evolution and Optimum Seeking.
New York: John Wiley and Sons, 1995.

[20] H. Muhlenbein, S. Schomisch and J. Born, “The
Parallel Genetic Algorithm as Function Optimizer,” in
Proceedings of the Fourth International Conference on
Genetic Algorithms. R. Belew and L. Booker Ed.
Morgan Kaufman, 1991, pp. 271-278.

[21] A. V. Levy and A. Montalvo, “The Tunneling
Algorithm for the Global Minimization of Functions,”
Society for Industrial and Applied Mathematics, vol. 6,
pp. 15-29, 1985.

[22] A. Torn and A. Zilinskas, Global Optimization.
Berlin: Springer-Verlag, 1989.

[23] D. M. Himmelblau, Applied Nonlinear
Programming. New York: McGraw-Hill, 1972.

Proceedings of the International Workshop on Machine Intelligence Research (MIR Day, GHRCE- Nagpur)
© 2009 MIR Labs

31

	1. Introduction
	2. Description of algorithms
	2.1. ACOR algorithm
	2.2. Nelder-Mead simplex search
	2.3. Ant colony optimization-simplex search (ACONM)
	2.3.1. Changeover from ACOR to NM. The point where the algorithm shifts from ACOR to NM is a crucial parameter of the algorithm. We used the standard deviation between solutions in the decision space to make this shift. The reason for choosing standard deviation between solutions in decision space is that, when the ACOR algorithm begins to converge on the global optimum, the solutions in the archive lie in the vicinity of the global optimum. They form a neighborhood which can be used by NM to quickly reach the global optimum. This is shown for Bohachevsky function [13] in Figs 2 and 3.
	2.3.1. Construction of the Initial Simplex. NM is extremely sensitive to the initial simplex chosen. If the points of the initial simplex are such that their objective function values are more or less same, it doesn’t give the algorithm much information about the landscape of the function being minimized. This will result in the algorithm making a large number of function evaluations to reach the optimum. Therefore, it is necessary to construct the initial simplex in such a way that the points are well spaced out in terms of their objective function values. Therefore before invoking the NM algorithm, we sort the solutions in the archive T according to their fitness values, and divide the archive into (n + 1) chunks (n is the number of decision variables) and select the first solution in each chunk to create the initial simplex. This ensures that there is sufficient variation in the fitness values of the points making up the initial simplex. The effect of the initial simplex on the performance of NM for De Jong’s function1 [15] is shown in Fig 6.

	3. Experimental setup
	4. Results and discussion
	5. Conclusion
	6. References

