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Abstract 

 
In this paper we hybridize ACOR, which is a meta-

heuristic for optimization of continuous functions 
based on the Ant Colony Optimization framework with 
Nelder-Mead Simplex Search which is a direct search 
technique in a novel way and test its performance. In 
this study we use ACOR to do bulk of the search and 
use simplex search once the region of the global 
optimum is reached. This hybrid algorithm is able to 
converge faster to the global optimum for several test 
functions. The tuning of the parameters of the 
algorithm is also discussed. 
 
1. Introduction 
 

In the recent past, meta-heuristics have been 
extensively employed to solve nonlinear programming 
problems (NLP). The reason for this popularity is that 
unlike the classical methods they can work in cases 
where (i) derivative information is not available (ii) the 
function being optimized has local optima (iii) the 
search space is non-convex. Whenever meta-heuristics 
are employed there is a trade-off between 
“exploration”, which is the process of identifying 
promising regions in search space and “exploitation”, 
which is the process of using the promising region to 
obtain solutions. Population based search techniques 
are good at exploration but once they identify a 
promising region of search space they take too long to 
converge to the optimum. Hence several hybrid meta-
heuristics have been proposed which combine the 
strengths of meta-heuristics and local search 
techniques to achieve a good balance between 
exploration and exploitation. In the following, we first 
present a brief review of hybrid optimization 
algorithms not involving Ant Colony Optimization 
(ACO) and then a review of hybrid optimization 
algorithms involving ACO. 

In the literature, we find several optimization 
algorithms which are hybrids of meta-heuristics and 
local search techniques. In [1] INESA is presented, 
which is a hybrid of Non-Equilibrium Simulated 
Annealing (NESA) and a simplex-like heuristic. This 
hybrid was applied to solve reliability optimization 
problems in complex systems. In [2] a hybrid of 
Genetic Algorithms (GA) and Nelder-Mead Simplex 
Search (NM) is presented. This hybrid was applied to 
solve benchmark test problems. In [3] a hybrid of 
Simulated Annealing (SA), Tabu Search (TS) and NM 
is presented. This hybrid has the property of 
indentifying the global minimum together with some 
local minima, which may be of interest. It was tested 
on benchmark problems. A hybrid of TS and NM is 
presented in [4]. It was tested on benchmark test 
problems and also on a problem involving the design 
of eddy current sensor for non-destructive control. In 
[5] a hybrid of Differential Evolution (DE) and a 
simplex like heuristic, which comprised only the 
reflection property of NM, is presented. Here, the NM 
part of the hybrid is invoked after DE identifies a 
promising region of search space. It was applied to 
solve a parameter estimation problem arising in 
biochemical engineering. A hybrid of Particle Swarm 
Optimization (PSO) and NM is presented in [6]. The 
idea consists of allowing NM to work on the best 
points in the population of PSO to quickly arrive at the 
global optimum. 

In the ACO based hybrid algorithms we have 
Hybrid Continuous Interacting Ant Colony (HCIAC) 
[7], which is based on Continuous Interacting Ant 
Colony (CIAC) [8]. The CIAC algorithm introduces 
the notion of “heterarchy”, which is a form of direct 
communication between the ants. Apart from using the 
pheromone trail, which acts as a form of indirect 
communication, the direct communication between 
ants in the form of “heterarchy” is also used in the 
algorithm. The HCIAC is a hybrid of CIAC and NM. 
Dynamic Hybrid Interacting Ant Colony (DHCIAC) is 
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presented in [9], which is aimed at optimization of 
dynamic functions instead of static ones. 

Although CIAC and its variants have hybridized 
ACO and NM, the CIAC algorithm itself is a modified 
form of ACO metaphor, since it uses the notion of 
“heterarchy”. ACOR [10], on the other hand is an 
elegant extension of the ACO metaphor to the realm of 
continuous optimization. It makes no major structural 
changes to ACO and bases its search function purely 
on the pheromone trail values. Hence we are motivated 
to try out the hybridization of ACOR with the fast 
direct search capability of NM. 
 
2. Description of algorithms 
 

The proposed algorithm is a hybrid of ACOR [10] 
and Nelder Mead Simplex Search [11]. We describe 
below, both the algorithms and then give the 
description of the proposed hybrid algorithm. 

 
2.1. ACOR algorithm 

 
The ACOR algorithm for continuous optimization 

was propsed by Socha and Dorigo [10]. It is an 
extension of the original ACO algorithm [12] meant 
for combinatorial optimization. In ACO for 
combinatorial optimization the solution is constructed 
as a sequence of solution components. The number of 
solution components is finite. Each solution 
component has associated with it, a “pheromone” 
value which indicates the “goodness” of the solutions. 
Better solutions have higher pheromone values 
associated with them. The solution construction 
proceeds in a probabilistic fashion using the 
pheromone values. However, in continuous 
optimization, the problem is that the number of 
solution components is infinite and therefore a 
different approach was needed. The ACOR algorithm 
makes use of a solution archive (a set of solutions) to 
construct probability density functions, which model 
the fitness of the solutions in various regions of the 
search space. The solution construction is done by 
sampling these probability density functions. We use 
the notation in [10] and briefly describe the algorithm 
below. For a detailed explanation of the algorithm, the 
reader is referred to [10]. 

The algorithm makes use of a set of solutions called 
an archive T, which contains k solutions S1, S2, …, Sk. 
f(S1), f(S2),…, f(Sk) represent the objective function 
values of the solutions. Let the number of decision 

variables be N.  represents the ith dimension of the 

lth solution. The solutions in the archive are sorted in 
the descending order of their fitness values. Ties are 

randomly broken. Weights are assigned to the 
solutions according to the following formula 
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q is a parameter of the algorithm. It affects the 
“peakedness” of the distribution of weights. Smaller 
values of q give rise to higher peakedness as opposed 
to higher values of q (Fig 1). These weights are used 
for selecting existing solutions which will be used for 
the generation of new solutions. In this context, small 
values of q cause the fittest solutions to be picked up 
for generating new solutions as opposed to higher 
values of q which cause almost all solutions to be 
chosen with equal probability. 

 
For each dimension a Gaussian kernel function is 

used as the probability density function. A Gaussian 
kernel function is a weighted sum of Gaussian 
functions. It is defined as  
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The vector of means is given by 
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The standard deviation is given by 
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ξ is a parameter of the algorithm. The parameter ξ 

influences the manner in which the solution archive 
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will be used in the search process. If the value of ξ is 
small, the new solutions will be close to the solutions 
in the archive and this increases the speed of 
convergence. On the other hand if the value of ξ is 
large, there will be greater diversification and 
convergence may be slow. 

The ACOR algorithm constructs the solutions by 
sampling the Gaussian kernel function. The sampling 
is done in two steps. First, a solution is picked up from 
the archive. This is same as selecting the Gaussian 
function in the Gaussian kernel. The solution 
(Gaussian function) l is chosen according to the 
probability 
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                                                        (5) 

 
Then the chosen Gaussian function is sampled. This 
process is repeated for each dimension. However, for 
each dimension a new solution is not chosen. The 
Gaussian functions corresponding to the already 
selected solution are used. 
 
Pseudo-Code for ACOR algorithm. 
1: Initialize the solution archive T to random solutions. 
2: repeat 
3:        sort the solutions in the archive in descending  
           order of fitness value. Break ties randomly. 
           Compute weights according to (1). 
4:        for each ant m in NUMANTS do 
5:                select a solution Sl probabilistically 
                   according to (5). 
6:                        for each dimension i do 
7:                                generate a random number Z 
                                   having standard normal 
                                   distribution. 

8:                                 calculate  according to (4). i
l

9:                                  i
l

i
l

i
m ZSS 

10:                        end for 
11:        end for 
12: until termination criterion is met 
 
2.2. Nelder-Mead simplex search 
 

Nelder-Mead simplex search was proposed by 
Nelder and Mead [11]. It is a heuristic technique (since 
it is based on rules of thumb and provides no 
guarantees) which is used for local search. It is based 
on a “simplex”, which moves towards the global 
optimum based on the objective function values of the 
points making up the simplex. 

The simplex is an n-dimensional figure. For solving 
a problem with n decision variables, we construct a 
simplex with (n + 1) dimensions. The simplex then 
moves towards the global optimum using the following 
four operations. 

 
Pseudo-Code for Simplex Search 
1: REFLECTION: Ph, Ps and Pl denote the points 
with the highest, second highest and the lowest 
objective function values. Let their corresponding 
objective function values be fh, fs and fl. Calculate the 
centroid Pc of the simplex by excluding Ph. Reflect the 
highest point in the simplex about the centroid 
 

)( hccr PPPP                                              (6) 

 
α is the reflection coefficient (α > 0). We used α = 1 as 

suggested in [11]. Replace Ph by Pr, if   

and repeat step 1 again. If f
lrs fff 

r < fl go to step 2, 
otherwise go to step 3. 
 
2: EXPANSION: Calculate the point of expansion Pe 
by searching in the direction of Pr. 
 

)( crce PPPP                                               (7) 

 
γ is the expansion coefficient (γ > 1). We used γ = 2 as 
suggested in [11]. If fe < fr , replace Ph by Pe, 
otherwise replace Ph by Pr . Go to step 1. 
 

3: CONTRACTION: If , Psrh fff  r replaces 

Ph. The point of contraction Pct is calculated. 
Otherwise, Pr does not replace Ph and the point of 
contraction is calculated directly. 
 

)( chcct PPPP                                             (8) 

 
β is the contraction coefficient (0 < β < 1). We used β 

= 0.5 as suggested in [11]. If h , P ct ff  ct replaces 

Ph and go to step 1. Otherwise, go to step 4. 
 
4: SHRINKAGE: If fct > fh then we shrink the 
simplex towards Pl (i.e., each point except Pl is moved 
towards Pl). 
 

)( lili PPPP                                                (9) 

 
δ is the shrinkage coefficient (0 < δ < 1). We used δ = 
0.5 as suggested in [11]. Go to step 1. 
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2.3. Ant colony optimization-simplex search 
(ACONM) 
 

We now describe the hybrid of ACOR [10] and 
Nelder-Mead Simplex Search [11], which we shall call 
ACONM. The idea behind ACONM is very simple. It 
is to allow ACO to do the exploration, and once the 
algorithm identifies a promising region, to invoke the 
NM algorithm to quickly arrive at the global optimum 
(exploitation). The two important issues in the hybrid 
are: 

1) The changeover from ACOR to NM. 
2) Creation of the initial simplex for the NM 

algorithm. 
 

2.3.1. Changeover from ACOR to NM. The point 
where the algorithm shifts from ACOR to NM is a 
crucial parameter of the algorithm. We used the 
standard deviation between solutions in the decision 
space to make this shift. The reason for choosing 
standard deviation between solutions in decision space 
is that, when the ACOR algorithm begins to converge 
on the global optimum, the solutions in the archive lie 
in the vicinity of the global optimum. They form a 
neighborhood which can be used by NM to quickly 
reach the global optimum. This is shown for 
Bohachevsky function [13] in Figs 2 and 3. 

In each iteration, the standard deviation between 
solutions is calculated which we shall call η. ACO is 
allowed to run while η is greater than a user specified 
value ηc. Once η becomes less than ηc, we shift to 
NM

, but the number of 
function evaluations could also be high. 

. 
If the value of ηc is chosen to be a large value, then 

the changeover from ACO to NM happens early. It 
might result in a decrease in the number of function 
evaluation because NM uses fewer function 
evaluations when compared to meta-heuristics, but rate 
of successful minimization may also suffer because 
NM is not good at avoiding local minima. On the other 
hand if the changeover is delayed, the rate of 
successful minimization may be high because of 
ACOR performing exploitation

 

 
Its effect on the number of function evaluations and 
rate of successful minimization for Goldstein-Price 
function [14] is given in Figs 4 and 5. 
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2.3.1. Construction of the Initial Simplex. NM is 
extremely sensitive to the initial simplex chosen. If the 
points of the initial simplex are such that their 
objective function values are more or less same, it 
doesn’t give the algorithm much information about the 
landscape of the function being minimized. This will 
result in the algorithm making a large number of 
function evaluations to reach the optimum. Therefore, 
it is necessary to construct the initial simplex in such a 
way that the points are well spaced out in terms of their 
objective function values. Therefore before invoking 
the NM algorithm, we sort the solutions in the archive 
T according to their fitness values, and divide the 
archive into (n + 1) chunks (n is the number of 
decision variables) and select the first solution in each 
chunk to create the initial simplex. This ensures that 
there is sufficient variation in the fitness values of the 
points making up the initial simplex. The effect of the 
initial simplex on the performance of NM for De 
Jong’s function1 [15] is shown in Fig 6. 
 

 
 
NM is invoked after the creation of the simplex and it 
runs until a specified termination criterion is met. 

Pseudo-Code for ACONM. 
1: Run ACOR while η > ηc 
2: Sort the solutions in the archive according to their 
fitness values. Divide the archive T into n + 1 chunks 
and create the initial simplex by picking the first 
solution from each chunk. 
3. Run NM until termination criterion is met. 
 
3. Experimental setup 
 

The ACOR and ACONM algorithms were run on 18 
test problems taken from the literature. In order to 
enable a fair comparison, the bounds fixed on the 
variables were same for both the algorithms. 

In our experiments the standard deviation between 
solutions in the decision space is used as the 
termination criterion. The algorithms stops when it 
becomes less than or equal to a user specified value η t 
or the maximum number of iterations being exceeded. 
Arbitrarily small value of η t may be chosen based on 
the accuracy desired. We chose η t to be 10E-4 and the 
maximum number of iterations as 1000 times the 
number of dimensions. 

We conducted 100 independent runs for each 
algorithm on each problem. The mean number of 
function evaluations and success rate over this set of 
100 runs is reported. The algorithm is considered to 
have successfully converged to the global optimum, if 
the absolute difference between the known optimum 
and the best solution found by the algorithm is less 
than a user specified value which we call maxerror. 
Again the user can choose an arbitrarily small value 
based the requirements. We chose maxerror to be 10E-
4 for both the algorithms. 

The parameters used in ACOR are presented in 
Table 1. These parameters are the same as the ones 
used in [10]. We didn’t resort to fine tuning of the 
parameters because, our aim is to compare the 
performance of ACOR with that of ACONM. The 
parameters used in ACONM are presented in Table 2. 
It contains the parameters of ACOR and that of NM 
together with the one new parameter which determines 
the point of changeover. Again the parameters of 
ACOR are same as those in the original paper and the 
parameters of NM are those suggested in [11]. Only 
the parameter ηc was chosen by us. We chose its value 
as 1. The effect of ηc on the performance of the 
algorithm was detailed in 2.3.1. In case of a new 
problem the user should start with a reasonably small 
value like 1 and then tune it to get better performance. 

The parameters shown in Tables 1 and 2 have not 
been varied across different problems. 
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Table 1. Parameters of ACOR 

q 0.1 
ξ 0.85 
numants 2 
K 50 
 

Table 2. Parameters of ACONM 
q 0.1 
ξ 0.85 
numants 2 
K 50 
α 1 
β 2 
γ 0.5 
δ 0.5 
ηc 1 
 
4. Results and discussion 
 

In order to compare ACOR and ACONM both the 
algorithms were implemented in ANSI C and run on 
Pentium IV machine with Linux operating system. The 
results of the numerical experiments conducted are 
presented in the Table 3. The simple hybrid that we 
presented is based on the ACOR and the Nelder-Mead 
Simplex Search. It combines the strengths of the two in 
a simple way without introducing too many new 
parameters. The effect of the new parameter 
introduced shows that there is a trade-off between 
success rate and function evaluations when setting the 
point of changeover. If the changeover is done early, it 
results in fewer function evaluations but with the 
possibility of a lower success rate. On the other hand, 
if the changeover is done late both the success rate and 
number of function evaluations could be high. This 
simple hybrid has performed quite well on several of 
the test functions. 
 
5. Conclusion 
 

In this paper we have presented a simple meta-
heuristic which is a hybrid of ACOR and Nelder-Mead 
Simplex Search. The hybrid algorithm makes use of 
the strengths of both the algorithms to achieve better 
performance. The ACOR algorithm is a powerful meta-
heuristic for global optimization. It is good at avoiding 
the local optima and reaching the vicinity of the global 
optimum (exploration). However, once we reach the 
vicinity of the global optimum we could use a 
relatively simple heuristic namely the Nelder-Mead 
Simplex Search to quickly arrive at the global 

optimum (exploitation). This strategy resulted in fewer 
number  

Table 3. Results 
 ACONM ACOR 

problem srate fevals srate fevals 
Ackley [16] 0.79 712.62 0.81 1251.97 
Bohachevsky 
[13] 

0.83 300.74 1.00 709.42 

Branin [14] 1.00 539.23 1.00 901.72 
De Jong 
Function1 
[15] 

1.00 184.21 1.00 565.3 

Easom [17] 1.00 271.79 1.00 950.80 
Goldstein-
Price [14] 

0.98 161.40 1.00 553.74 

Griewank10 
[18] 

0.01 2102.00 0.28 2679.85 

Hartman 3 
[14] 

1.00 179.90 1.00 698.18 

Hartman 6 
[14] 

0.58 423.43 0.57 1183.54 

Rosenbrock 
[19] 

1.00 653.11 1.00 1314.38 

Schwefel [20] 0.55 1112.76 0.59 1633.45 
Shekel5 [14] 0.54 569.59 0.61 1161.34 
Shekel7 [14] 0.67 502.11 0.59 1059.49 
Shekel10 [14] 0.66 516.96 0.66 1067.33 
Shubert [21] 0.84 1559.64 0.85 1991.94 
Rastrigin [22] 0.56 807.16 0.63 1388.50 
Modified 
Himmelblau 
[23] 

0.80 416.02 0.77 844.33 

Zakharov [2] 1.00 226.75 1.00 631.46 
 
of function evaluations on several functions in a suite 
of 18 simple to difficult unconstrained benchmark 
problems. We showed the effect of the newly 
introduced parameter on the performance of the 
algorithm. The simulations show that the hybrid 
algorithm is able to converge to the optimum using 
fewer function evaluations for several problems. This 
is the significant result of the present study. 
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