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Abstract: This paper presents a comparative study of the
performance of three versions of Adaptive Neuro-Fuzzy
Inference System (ANFIS) hybrid model and two innovative
hybrid models in the prediction of oil and gas reservoir
properties. ANFISisa hybrid learning algorithm that combines
the rule-based inferencing of fuzzy logic and the
back-propagation learning procedure of Artificial Neural
Networks. Functional Networks-Support Vector Machines
(FN-SVM) and Functional NetworksType-2 Fuzzy Logic
(FN-T2FL) were proposed to improve the performance of the
stand-alone SVM and T2FL modes respectively. The FN
component of the FN-T2FL hybrid model automatically extracts
the most relevant attributes from the input data using the least
squar e fitting algorithm as an improvement over the individual
Functional Networks and Type-2 Fuzzy Logic modeds. The
former is more promising asit combinestwo existing techniques
that are very close in performance and well known for their
computational stability and fast processing. The FN-SVM
hybrid model also benefitsfrom the excellent performance of the
least-square-based model-selection algorithm of Functional
Networks and the non-linear high-dimensional feature
transformation capability that is based on structural risk
minimization and Tikhonov regularization properties of SVM.
Training and testing the SVM component of the hybrid model
with the best and dimensionally-reduced variables from the
input data resulted in better performance with higher
correlation coefficients, lower root mean square errors and less
execution timethan thetraditional SYM model. A comparison of
FN-SVM and FN-T2FL with the three versions of ANFIS
showed the superiority of the FN-SVM model over the others.
The three ANFIS modéls still proved to be good in solving real
industrial problems dueto their speed of execution especially in
dense data conditions.

(Cl) and Machine Learning technigques such as Fonati

Networks (FN), Type-2 Fuzzy Logic System (T2FLSYan

Support Vector Machines (SVM) have shown to beatiffe
for a wide range of real-world applications. Howetke “No

Free Lunch theorem” [2] applies since each of these

techniques has its limitations and constraints tatld not

make it appropriate to solve all problems in déferdata and

operational scenarios. This calls for the need ytbritize
these techniques so that one of them would compiethe
limitations and weaknesses of others to ensureeased
performance in various challenging real-world sciEsa

Thus, hybridization of Cl techniques can boost rthei

individual performance and make them achieve muchess
in dealing with large-scale, complex problems [1].

The concept of hybridizing existing Cl techniques
especially useful in oil and gas exploration anddpiction
where a little improvement in accuracy of the pcédn of
various petroleum reservoir properties could lead tvery
high increase in the exploration and productionnudre
energy. The two important properties of oil and iggrvoirs
that are focused in this study are porosity andnpability.
They are the fundamental reservoir propertiesriiate to the
amount of fluid contained in oil and gas reservairal its
ability to flow. They are frequently measured ie tAboratory
on rock plugs extracted from the core of wellslédilfor oil
and gas exploration through the process of Logi\igle
Drilling (LWD) or Measurement While Drilling (MWDand
serve as standard indicators of reservoir quatityhe oil and
gas industry. The measured properties from theré&tbry are

Keywords: hybrid models, computational intelligence, porasity then (_jepth-matched with the log data taken fromattteial
permeability, functional networks, support vectaahines, ANFIS ~ Wells in the field. Well logs, measured from a prdbwered

|. Introduction

A recent study [1] reported that Computational lligence

into the borehole at the end of an insulated calievide a
wealth of information about the wells that haverbdelled.
The measurements are recorded graphically or tigaa a

function of depth and are commonly known as geoighls
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well logs, petro-physical logs, or simply well loggs 4].

Some of the uses of well logs in the oil and gakigtry
include identifying potential reservoir rocks, detéing
reservoir bed thickness, locating hydrocarbonsimesing
water saturation, quantifying amount of hydrocahon
estimating the type and rate of reservoir fluid darction,
estimating reservoir formation pressure, deterngipiorosity,
estimating permeability, and identifying fracturenes in
rocks [5]. When the well logs are combined with ttee
measurements, the new entity serves as a greatrceso the
determination of subsurface properties for the tiooa
exploration, production and exploitation of a newlivto be
drilled.

Since both the laboratory and field measurements
usually costly and time-consuming, Cl techniques 8 as
well as hybrid methodologies [9 - 12] have beercsasfully
applied in the prediction of these properties tcaaceptable
degree of accuracy. Due to the limitations of edth
technique that would not make its application dese in
certain operational conditions such as small dasssnarios
[13 - 15] and high dimensionality of data condigdi5, 16],
hybrid CI has caught the attention and intereseeéarchers
and practitioners in the oil and gas industry aad become
increasingly popular [10]. A good number of hybnmbdels
have been reported to be successfully applied iroleem
engineering [17 - 20].

Since FN partly uses a least-square algorithm shkcts
the best subset of features from a set of inpwat diatl SVM is
known for its capability to conveniently handle alaf high
dimensionality with its insensitivity to data sizeymbining
these two techniques in a way that they complensach
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reservoir predictions. The ultimate goal is a resermodel
with realistic tolerance for imprecision and unaarty [11].
Reservoir characterization focuses on modeling each
reservoir unit, predicting well behavior, underslizng past
reservoir performance, and forecasting future keser
conditions.

Different borehole and reservoir formation condisanay
require different tools to measure the same prgp€here are
many important subsurface properties that neeé teltected
or measured but porosity and permeability are thastm
important properties since they jointly serve asmajor
indicator of petroleum reservoir quality and ecoi®m
viability. The data acquired from these dataset¢sused for
the estimation of porosity, permeability and otheservoir

Froperties such as rock types, the thickness &fleyers; the

amount of hydrocarbons; and water salinity.

Porosity is an important consideration when attémgpto
evaluate the potential volume of hydrocarbons doathin a
reservoir as it is a measure of the percentageidévand open
spaces in a rock. These voids and spaces are ipbtent
receptacles for oil and gas. Permeability, on themhand, is
a key parameter in the characterization of any dgahbon
reservoir as it is a measure of how interconnedtss
individual voids and spaces are in a rock. In,facany
petroleum engineering problems cannot be solvedrataly
without having an accurate value of permeability 4B In
view of the importance of porosity and permeabilitpil and
gas exploration and production, this study focuseghese
two properties.

B. Adaptive Neuro-Fuzzy Inference System (ANFIS)
ANFIS, proposed by [23], is a result of an intediig

other has shown to be a welcomed development [Wompination of the learning capabilities of Artiit Neural

Similarly, an improvement in the prediction perfemee of
T2-FLS was shown in [21] with the use of FN.
importance of feature selection in the improvemeft
prediction and classification accuracies has atentstudied
[22].

This proposed study implements three versions aiphitle
Neuro-Fuzzy Inference System (ANFIS) and compahes t
results with those of FN-SVM and FN-T2F in the peddn
of porosity and permeability of oil and gas res@sioANFIS
was selected for this comparative study becausdtlie only
hybrid CI technique that is available as a standaotbox in
MATLAB software [23]. Our major motivations for thstudy
are the continued discovery of various Cl techniquéth
common denominators that are suitable for hybrithnaand
the consistent quest for better techniques in thdigtion of
petroleum reservoir properties for the productidnnmre
energy.

[I. Survey of Literature

A. Oil and Gas Reservoir Characterization

Oil and gas reservoir characterization is a prockss
quantitatively describing various reservoir prot in
spatial variability using available field and labtory data [6].
Reservoir characterization plays a crucial rolemndern

Networks (ANN) and the reasoning capabilities ofzFu

Thel_ogic as a hybrid intelligent system. It is a netkvetructure

that implements Fuzzy Inference System (FIS), avkedge
representation where each fuzzy rule describes cal lo
behavior of the system, and employs hybrid learnitgs for
training. It is a class of adaptive networks whictjoys many

of the advantages claimed by ANN and the linguistic
interpretability of FIS while combining the gradiethescent
and the least-squares method technologies. Thefiezzy
model of ANFIS is a multilayer neural network-bagaedzy
system. Its basic architecture is shown in Figunsith the
system having a total of five layers [24].
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Figure 1. The Basic Architecture of ANFIS [24]

reservoir management. It helps to make sound reserv The main objective of ANFIS is to integrate the thes

decisions and improves the asset value of the ral gas
companies. It maximizes integration of multidisaiply data

features of fuzzy systems, through the represemtat prior
knowledge into a set of constraints (network togg)oto

and knowledge, and hence improves the reliabilify Geduce the optimization search space; and ANN tirdbe
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adaptation of the back-propagation to the structumetwork
for automating the fuzzy system's parametric tuniigFIS
is one of the best tradeoff between neural andyfeyatems
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proposed a FN-T2FL hybrid model that utilized theability
of the least-square fitting algorithm of FN to exdrthe most
relevant attributes for the T2FL component. Thesults, in

as it provides smoothness due to the fuzzy systenggdition to confirming that the FN-T2FL hybrid madde

interpolation capability; and adaptability due teetANN's

performed better than the individual FN and T2Rthtd@ques

back-propagation algorithm [25]. However, the majoksed individually, also demonstrated that theremisre
weakness of ANFIS lies in its strong computationaﬂ’o'[e”tial in the hybridization of existing technégufor better

complexity restrictions [25, 26]. Some of the adeaes and
disadvantages of ANFIS have been presented in [27].

The role of each layer of the ANFIS hybrid systesras
follows [24]:

» Layer 1: This takes input from the data. Every nisde
an adaptive node. The input parameters handled
this layer are called premise parameters.

» Layer 2: Every node is fixed. The output is thedorct

accuracy and increased characterization of oil a@ad
properties. Their work was motivated by the sudcéssals
of various hybrid models such as [7] that produ@D
fracture intensity and fracture network maps iar@é block
of field using Artificial Neural Network (ANN) andruzzy
ogic (FL); [35] that used ANN to predict permedtyilfrom
b)étrographic data while using Fuzzy Logic to scraed rank
the predictor variables with respect to the tavgetable; and
[36] that proposed a new method for the auto-desfghNN

of all the incoming signals. Each node outpubhased on Genetic Algorithm.

represents the firing strength of a rule. This feitime

In [1], the authors built upon their experiencetlom success

core part of the Fuzzy Logic System componentef thof FN-T2FL hybrid model to propose a FN-SVM hybrid

hybrid network.
e Layer 3: Every node is fixed. Each calculates #tmr

model. They argued that the combination of Fuzzgitand
Artificial Neural Networks (ANN) for the predictiorof

of the f" rule’s firing strength. Thus the outputs of thispermeability by means of Flow Zone Index in [3F tuse of

layer are called normalized firing strengths.

Genetic Algorithm (GA) to tune the parameters of M

«  Layer 4: Every node is an adaptive node. ParametdB6]; the combination of Fuzzy Logic and GA for the
are referred to as consequent parameters. Thigeis Pptimization of gas production operations in [3#)d the use
core part of the back-propagation algorithm of ANNfany of GA, Fuzzy Logic and ANN in other stud[8s - 41]
in the hybrid system. could not have been the best idea based on thewiolj

«  Layer 5: The single node in this layer is a fixedle. €asons.

It computes the overall output as the summaticailof ~ * 1hough, GAis a very robust optimization algorittimat
incoming signals is based on an exhaustive search paradigm, it is we

In ANFIS, there are two information passes in tlybrid known f_or its long execution time, its need for ng_
L processing power due to its computational compjexit

algorithm: forward pass and backward pass. In tmevdrd and sometimes inefficiency as it gets cut up in som
pass, the node outputs go forward up to layer 4ewthie local optima [42]
consequent parameters are _identified_ by the leqsares . Fuzzy Logic becomes complex and time-consuming
method of the bg\ck-propagatlon algorithm. In thekivaard when applied on high-dimensional data [17] and
pass, the error signals propagate backwards dovayés 2 performs poorly when applied on datasets of snizdl s
where the premise parameters are updated by gtattiscent

. ; : [22].
algorithm of the Fuzzy Logic component. More detabout ~ « ANN is also known to suffer from many deficiencies
the architecture of ANFIS can be found in [24].

such as having no general framework for the desfgn
its appropriate network for a specific task and its
frequent requirement of large number of parameters
fit a good network structure [43, 44].
ANFIS has been widely used in various applicaticzaa
most especially bioinformatics [45, 46], environrzn
sciences [47], image processing [48], manufacturing

C. Hybrid Computational Intelligence in Oil and Gas

Some of the successful applications of Hybrid Cotafonal
Intelligence (HCI) are found in the bioinformaticssience,
technology and engineering. These include the sefeof

winding material in electric power transformers ngsia

hybrid of decision trees for attribute selectiord ameural

networks for winding material classification for eth
calculation of the performance characteristics a@iche
considered design [28]; and a hybrid of genetigmomming

approach and a heuristic rule-based scheme for

classification between different types of aphasidhuman
syndrome, often due to brain damage [29]. Theseedlsas

others were discussed in [1]. Other applications trod

advances of HCl include [30 - 32].

th

engineering [49 - 51], finance [52, 53], and minj&4]. In the
prediction of permeability of oil and gas resergpimo study
was found in literature that compares ANFIS as Aaridy
model with any other proposed hybrid system for
investigating possible improvements in performance
Bcuracy. Few available studies compared ANFIS wiitter
techniques such as the conventional porosity-péditiya
transform [39], multi-linear regression technig4dd ]} ANN
and conventional empirical transformation [55].

A closely related study to this work is [11]. Hoveeythe

In petroleum engineering, HCI has been successfully,inors used three hybrid components comprisingNf

applied in many areas such as seismic pattern niamy
porosity and permeability predictions; identificati of
sandstone lithofacies; drill bit diagnosis; and Igsia and
improvement of oil and gas well production.

While appreciating the increased application of dtiamal
Networks and Type-2 Fuzzy Logic as stand-alone
techniques in studies such as [33] and [34], referg21]

T2FL and SVM to propose two hybrid models. In thalgsis

of the three-component hybrid models, some reduridan
were introduced by the presence of T2FL and SVM
components as their inclusion in the hybrid systeuld not
be adequately justified. The presence of the tboaeponents

Giso made the entire hybrid system too complexsdyae.
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This paper further seeks to investigate the caipyal@hd [26], but extracted, customized and combined witheo functions.
robustness of the FN-T2F and FN-SVM models irhe general behavior of ANFIS is described in [d4]
comparison with ANFIS, the first and the only star
hybrid model (to the best of our knowledge) to éehnically Rule 11 IF &1 =A11), X2=Aq), ..., andXim=Asm) THEN (f;
and commercially available in the MATLAB Toolbox3R =P *+ i+ 1)
which is the most widely used tool for most techhic
computing applications in both industry and thedecaia. Rule 2: IF fo1=Az1), (%22 =Az2), ..., andXom=Aor) THEN (f2

=pPX + Oy + 1)

[I1. Description of Data, Experimental Design
and Mode Framework

A. Description of Data
In order to establish a strong basis for a fair panson, the Rulen: IF (1 =Ant), (a2 =An2), ..., andXam = Aom) THEN (i

same sets of porosity and permeability datasets &g wells ~ PoX + Gy + 1)
(three for porosity and three for permeability)ttheere used
for the testing and evaluation of FN-T2FL [22] &F-SVM
[1] models were also used in this study. Site 1,
heterogeneous platform that is made up of carboante
dolomite, contains six predictor variables for ity while
site 2, majorly of carbonate and sandstone formatio
contains twelve predictor variables for permeapilience,
the datasets are representative of the major ailihg
geological formations found in most parts of theppoducing
world.

wherex; are the inputsi,,are the fuzzy sets aidare the
gutputs within the fuzzy region specified by thezurule,p,.
d., andr,are the design parameters that are determinedgdurin
the training process.

Three versions, based on the training algorithmthef
ANFIS hybrid model were used in this study viz. dri
Partitioning, Subtractive Clustering and Fuzzy Cave
Clustering. The ANFIS with Grid Partitioning (ANFGP)
was used to generate a single-output Sugeno-typey fu
inference system (FIS) using a grid partition oa tlata (no
clustering). The outputs of the adaptive nodesayed 1 are
B. Experimental Design fuzzy membership grade of the inputs, which areegaly

The hybrid computational intelligence and machiearhing 9iven by:
approaches form the basis of the methodology ereploy

this study. 0f =p,(x)i=12 (1)
1) Design of FN-T2F and FN-SVM Frameworks and
For the purpose of avoiding repetition of methodas in
this paper, readers are referred to [1] and [2d}He detailed 0} = T (y)i=3,4 (2)
i-2

design framework, methodologies and optimized patars

employed in the design of the FN-SVM and FN-T2Frityb

models respectively. wherep, (x) and p, _(y)are fuzzy membership
As shown in Figure 2, the FN-T2F hybrid model i%unctions A Bi-2

composed of two blocks containing, respectively: &hd '

T2FL. In the FN block, the training procedure thaes the Several input Membership Functions (MFs) were tried

least-squares fitting algorithm was incorporatedét®ct the it jinear andconstantoutput MFs. All the MFs withinear

best variables from the input data. The outputhaf block,  oyutput MF were found to be over-fitting (Figure Hpwever,

the most relevant attributes of the input data,ew#ten  Gayssiarandbell-shapedViFs with constant output MF were

divided into training and test sets. The trainiagwas used to found to be highly competitive in performance. Ather

train the T2FL model's Gradient-Descent approactl an comparative investigation showed that tBaussianMF is

Gaussian membership function while optimizing thedel optimal for this problem, especially the porosigtal (Figure

parameters. The trained hybrid model was then atedli 5). This agrees with literature [56] that presehtsGaussian

using the testing data subset. MF as the best for most applications. Thaussiannput MF
Figure 3 shows the design framework of the FN-SVNB given by:

hybrid model. Similar to the FN-T2F, the FN compoineas (-2

used as a best-subset selector for the SVM compomibka Hy, (x) = exp (— ;7) (3)

most relevant attributes from the input data ouguliby the '

FN block were divided into training and testing sets. The

training subset was used to train the SVM compomédmith

was later used to predict the target variable B #5ting  \yherec, ando? are the centre and width of thsfuzzy set

subset with the actual values hidden from the aystetest its A, respectively.

generalization capability.
The fixed layer 2 nodes serve the role of a simplétiplier.
2) Design of the ANFIS Hybrid Model The outputs of this layer, the firing strengthsha rules, can

The framework of the ANFIS hybrid model used irstsiudy was the be represented as:

one proposed by [23], which is available in the MAB Toolbox
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2 _ — P —
Oi =W = UAi(x)HBi(J’) L= 1;2 (4)

The fixed layer 3 nodes play a normalization ralettte
firing strengths from the previous layer 2. Theput$ of this
layer, the normalized firing strengths, can beespnted as:

0} = w, 1,2

wi+wy (5)

In layer 4, the output of each adaptive node is thyer is
simply the product of the normalized firing stremgnd a first
order polynomial (for a first order Sugeno moddihis is
given by:

Of‘ = a)l-fl. = wi(pl.x +qy+ rl-) i=12 (6)
In the layer 5, the only one single fixed node perfs the
summation of all incoming signals. Hence, the oNenatput

of the model is given by:

CLwif)

wqi+wy

0;'5 = 1'2=1 @)

wifi =

The ANFIS with Subtractive Clustering (ANFIS-SC)ava
used to generate a FIS by first applying subtraatiustering
on the data. This is accomplished by extractingtaofrules
that models the data behavior by first using subclust
function to determine the number of rules and adent
membership functions and then using linear leaststs
estimation to determine each rule's consequenttieqsa
Different optimal radii were found for the porosignd
permeability datasets. For the porosity datasefsis®ptimal
(Figure 6, 7, 8) while for the permeability dataset.6 was
found to be optimal (Figure 9, 10, 11). It wouldrised that
Figure 8 shows that ANFIS, similar to Type-2 Futngic is
also vulnerable to overfitting when handling sndditasets
[16].
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C. Model Evaluation Criteria

Similar to the previously published FN-T2F and FMAN

and in order to ensure a fair comparison with ANRI®
performance of the models was evaluated using the
correlation coefficient (CC), root mean-square®efRMSE)

and execution time (ET). CC measures the statistica
correlation between the predicted and actual vaRBSE is
one of the most commonly used error measures cessdor
numeric prediction as it computes the average efstjuared
differences between each predicted value and
corresponding actual value. ET is simply the ttitak taken
for a technique to run from the beginning to itd eising the
CPU time.

its

V. Experimental Resultsand Discussion

A. Experimental Results

The ANFIS-GP model only worked with the porosityakets
and not with the permeability datasets. This is tughe
inability of the model to handle such datasetséttributes.
However, the results of the comparison of ANFIS-&&I
ANFIS-FCM with FN-T2F and FN-SVM are shown in Figur
18 - 23. Since the main focus of any machine legrtask is
to investigate its generalization capability andoirder to
reduce the volume of figures presented in this papdy the
comparative results of testing are presented. dheparative
result of the CC and RMSE for all the 3 porosityllsvare
shown in Figure 18 and 19 respectively while thE&ir
comparison for training and testing are shown iguFé 20.
Similarly, the comparative result of the CC and RaVisr all
the 3 permeability wells are shown in Figure 21 &#i
respectively while their ET comparison for trainirgnd
testing are shown in Figure 23.

B. Discussion of Results

The ANFIS with Fuzzy C-Means Clustering was used tdhe results showed that, in terms of CC, the FN-SwMdrid

generate a FIS using FCM clustering by extractirgetaof
rules that models the data behavior. The rule etitra

model outperformed all the other hybrid models witke
highest accuracy as shown in Figure 18. In termRMBSE,

method first uses thfemfunction to determine the number of FN-SVM has the lowest value. This is converselyieajant

rules and membership functions for the antecedents
consequents. Different number of clusters was falsod for
the porosity and permeability datasets. This isreanezed in
Table 1 and shown respectively for each well inukégl2 -
17.

To further ensure a solid basis for fair comparjsibe
ANFIS models were run in 50 iterations and the ager
values of the evaluation criteria were recorded.

Table 1.0ptimal Number of Clusters for Datasets.

Data Set Optimal Number of

Clusters

Site 1 Well 1
Site 1 Well 2
Site 1 Well 3
Site 2 Well 1
Site 2 Well 2
Site 2 Well 3

NNNNBAD

to the CC result (Figure 19). In terms of ET, FNFTtaok the
most time for training and testing (Figure 20). Theersions
of ANFIS equally demonstrated their capabilitiesshypwing
competitive performances and at faster speed ofutiom
than FN-T2F and FN-SVM. It would be noted that thk
predictions are not perfect since real-life operal field
datasets were used.

For permeability, the FN-SVM hybrid model has the
highest CC and the lowest RMSE demonstrating itesar
predictive capability over the other two modelg(Fe 21 and
22). The more the correlation between the actudl the
predicted target variables, the less the root nsgaare error
is expected to be. Also, in terms of execution fife-T2F
took the most time for training and testing (Figd&).

The excellent performance of FN-SVM can be atteblutb
the reduced dimensionality of the data fed intoSk@& block
of the hybrid model. It is further due to the rolethe least
square fitting algorithm of the FN block in the mxition of
the most relevant input variables for the trairang testing of
the SVM block. This ensures that the SVM block ueaty
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the best of the input variables and hence is noupted by
the redundant and irrelevant variables from thegioai
datasets. v

The dimensionally-reduced dataset that was usethdy
SVM block from the output of the FN block also erezlithat
the data matrix used in the execution of the SVbthklis less
complex despite than SVM is originally “light-weighIn
addition to the reports that SVM scales relativeisil with
high dimensional data [8, 10, 15], we further arthes SVM
can be improved by reducing the dimension of tipaitiata
through best subset selection. This will have thabde effect
of reducing the training time and further incregsithe
accuracy of the prediction process.

Based on the result of this study, FN-T2F did rexfgrm
as well as FN-SVM. A question could be asked hafiey did v
T2F not derive as much benefit from the FN blociSad1?

We argue that this is due to the peculiar qual@feSVM such
as its ability to handle small data and scalability v
high-dimensional data which T2F do not possess.

It can be said that despite the superiority of FRWS all
the other models are very competitive in their perfance,
especially with the porosity datasets. Again, wgiarthat this
is partly due to the efficiency of the grid paditj subtractive
clustering and Fuzzy C Means algorithms. The “NeeFr
Lunch Theory” [2] still holds true here despite #ecellent v
performance of FN-SVM such that we may not conclinde
the FN-SVM hybrid model is absolutely the best. €th
hybrid models might perform better or equally gaodome
other data scenarios such as in the case of peiliteab
datasets where the grid partitioning algorithm &FAS did
not work.

be further improved by reducing the dimension @f th

input data through best subset selection.

FN-T2F took the most time for training and testthge

to the inherent complexity of the gradient descent

algorithm of the T2F component [16].

v" ANFIS with grid partitioning performed competitiyel
with the porosity datasets with 5 attributes butildo
not handle the complexity introduced by the 12
attributes of permeability datasets. This is ire limith
what has been reported about ANFIS [24, 25].

v' The 3 versions of ANFIS used in this study are égua

good and demonstrate competitive capabilities due t

the excellent performance of the grid partitioning,

subtractive clustering and the fuzzy C-means
algorithms.

ANFIS, like Type-2 Fuzzy Logic, could not perform

well in cases of small datasets and high dimensiona

data [16].

On the average, the outperformance of FN-SVM over

all the other models might be marginal. However, a

little improvement in the accuracy of the prediotiof

oil and gas reservoir properties may result in the

increased exploration, production and exploitatidn

more energy and huge increase in the capital blse o

the oil industry.

The main contributions of this study are to proke t

potentials of computational intelligence hybrid retd

in the petroleum industry and to demonstrate tttaro

models, though not optimal, also have their possibl

positions in solving real industry problems.
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