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Abstract: This paper presents a comparative study of the 
performance of three versions of Adaptive Neuro-Fuzzy 
Inference System (ANFIS) hybrid model and two innovative 
hybrid models in the prediction of oil and gas reservoir 
properties. ANFIS is a hybrid learning algorithm that combines 
the rule-based inferencing of fuzzy logic and the 
back-propagation learning procedure of Artificial Neural 
Networks. Functional Networks-Support Vector Machines 
(FN-SVM) and Functional Networks-Type-2 Fuzzy Logic 
(FN-T2FL) were proposed to improve the performance of the 
stand-alone SVM and T2FL models respectively. The FN 
component of the FN-T2FL hybrid model automatically extracts 
the most relevant attributes from the input data using the least 
square fitting algorithm as an improvement over the individual 
Functional Networks and Type-2 Fuzzy Logic models. The 
former is more promising as it combines two existing techniques 
that are very close in performance and well known for their 
computational stability and fast processing. The FN-SVM 
hybrid model also benefits from the excellent performance of the 
least-square-based model-selection algorithm of Functional 
Networks and the non-linear high-dimensional feature 
transformation capability that is based on structural risk 
minimization and Tikhonov regularization properties of SVM. 
Training and testing the SVM component of the hybrid model 
with the best and dimensionally-reduced variables from the 
input data resulted in better performance with higher 
correlation coefficients, lower root mean square errors and less 
execution time than the traditional SVM model. A comparison of 
FN-SVM and FN-T2FL with the three versions of ANFIS 
showed the superiority of the FN-SVM model over the others. 
The three ANFIS models still proved to be good in solving real 
industrial problems due to their speed of execution especially in 
dense data conditions.  
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I. Introduction 

A recent study [1] reported that Computational Intelligence 

(CI) and Machine Learning techniques such as Functional 
Networks (FN), Type-2 Fuzzy Logic System (T2FLS) and 
Support Vector Machines (SVM) have shown to be effective 
for a wide range of real-world applications. However, the “No 
Free Lunch theorem” [2] applies since each of these 
techniques has its limitations and constraints that would not 
make it appropriate to solve all problems in different data and 
operational scenarios. This calls for the need to hybridize 
these techniques so that one of them would complement the 
limitations and weaknesses of others to ensure increased 
performance in various challenging real-world scenarios. 
Thus, hybridization of CI techniques can boost their 
individual performance and make them achieve much success 
in dealing with large-scale, complex problems [1].  

The concept of hybridizing existing CI techniques is 
especially useful in oil and gas exploration and production 
where a little improvement in accuracy of the prediction of 
various petroleum reservoir properties could lead to a very 
high increase in the exploration and production of more 
energy. The two important properties of oil and gas reservoirs 
that are focused in this study are porosity and permeability. 
They are the fundamental reservoir properties that relate to the 
amount of fluid contained in oil and gas reservoirs and its 
ability to flow. They are frequently measured in the laboratory 
on rock plugs extracted from the core of wells drilled for oil 
and gas exploration through the process of Logging While 
Drilling (LWD) or Measurement While Drilling (MWD) and 
serve as standard indicators of reservoir quality in the oil and 
gas industry.  The measured properties from the laboratory are 
then depth-matched with the log data taken from the actual 
wells in the field. Well logs, measured from a probe lowered 
into the borehole at the end of an insulated cable, provide a 
wealth of information about the wells that have been drilled. 
The measurements are recorded graphically or digitally as a 
function of depth and are commonly known as geophysical 
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well logs, petro-physical logs, or simply well logs [3, 4]. 
Some of the uses of well logs in the oil and gas industry 

include identifying potential reservoir rocks, determining 
reservoir bed thickness, locating hydrocarbons; estimating 
water saturation, quantifying amount of hydrocarbons, 
estimating the type and rate of reservoir fluid production, 
estimating reservoir formation pressure, determining porosity, 
estimating permeability, and identifying fracture zones in 
rocks [5]. When the well logs are combined with the core 
measurements, the new entity serves as a great resource in the 
determination of subsurface properties for the location, 
exploration, production and exploitation of a new well to be 
drilled. 

Since both the laboratory and field measurements are 
usually costly and time-consuming, CI techniques [6 - 8] as 
well as hybrid methodologies [9 - 12] have been successfully 
applied in the prediction of these properties to an acceptable 
degree of accuracy. Due to the limitations of each CI 
technique that would not make its application desirable in 
certain operational conditions such as small dataset scenarios 
[13 - 15] and high dimensionality of data conditions [15, 16], 
hybrid CI has caught the attention and interest of researchers 
and practitioners in the oil and gas industry and has become 
increasingly popular [10]. A good number of hybrid models 
have been reported to be successfully applied in petroleum 
engineering [17 - 20].  

Since FN partly uses a least-square algorithm that selects 
the best subset of features from a set of input data and SVM is 
known for its capability to conveniently handle data of high 
dimensionality with its insensitivity to data size, combining 
these two techniques in a way that they complement each 
other has shown to be a welcomed development [1]. 
Similarly, an improvement in the prediction performance of 
T2-FLS was shown in [21] with the use of FN.  The 
importance of feature selection in the improvement of 
prediction and classification accuracies has also been studied 
[22].  

This proposed study implements three versions of Adaptive 
Neuro-Fuzzy Inference System (ANFIS) and compares the 
results with those of FN-SVM and FN-T2F in the prediction 
of porosity and permeability of oil and gas reservoirs. ANFIS 
was selected for this comparative study because it is the only 
hybrid CI technique that is available as a standard toolbox in 
MATLAB software [23]. Our major motivations for this study 
are the continued discovery of various CI techniques with 
common denominators that are suitable for hybridization and 
the consistent quest for better techniques in the prediction of 
petroleum reservoir properties for the production of more 
energy. 

II. Survey of Literature 

A. Oil and Gas Reservoir Characterization 

Oil and gas reservoir characterization is a process for 
quantitatively describing various reservoir properties in 
spatial variability using available field and laboratory data [6]. 
Reservoir characterization plays a crucial role in modern 
reservoir management. It helps to make sound reservoir 
decisions and improves the asset value of the oil and gas 
companies. It maximizes integration of multidisciplinary data 
and knowledge, and hence improves the reliability of 

reservoir predictions. The ultimate goal is a reservoir model 
with realistic tolerance for imprecision and uncertainty [11]. 
Reservoir characterization focuses on modeling each 
reservoir unit, predicting well behavior, understanding past 
reservoir performance, and forecasting future reservoir 
conditions.  

Different borehole and reservoir formation conditions may 
require different tools to measure the same property. There are 
many important subsurface properties that need to be detected 
or measured but porosity and permeability are the most 
important properties since they jointly serve as a major 
indicator of petroleum reservoir quality and economic 
viability. The data acquired from these datasets are used for 
the estimation of porosity, permeability and other reservoir 
properties such as rock types, the thickness of rock layers; the 
amount of hydrocarbons; and water salinity. 

Porosity is an important consideration when attempting to 
evaluate the potential volume of hydrocarbons contained in a 
reservoir as it is a measure of the percentage of voids and open 
spaces in a rock. These voids and spaces are potential 
receptacles for oil and gas. Permeability, on the other hand, is 
a key parameter in the characterization of any hydrocarbon 
reservoir as it is a measure of how interconnected the 
individual voids and spaces are in a rock.  In fact, many 
petroleum engineering problems cannot be solved accurately 
without having an accurate value of permeability [3, 4]. In 
view of the importance of porosity and permeability in oil and 
gas exploration and production, this study focuses on these 
two properties. 
 

B. Adaptive Neuro-Fuzzy Inference System (ANFIS) 

ANFIS, proposed by [23], is a result of an intelligent 
combination of the learning capabilities of Artificial Neural 
Networks (ANN) and the reasoning capabilities of Fuzzy 
Logic as a hybrid intelligent system. It is a network structure 
that implements Fuzzy Inference System (FIS), a knowledge 
representation where each fuzzy rule describes a local 
behavior of the system, and employs hybrid learning rules for 
training. It is a class of adaptive networks which enjoys many 
of the advantages claimed by ANN and the linguistic 
interpretability of FIS while combining the gradient descent 
and the least-squares method technologies. The neuro-fuzzy 
model of ANFIS is a multilayer neural network-based fuzzy 
system. Its basic architecture is shown in Figure 1 with the 
system having a total of five layers [24].  

 

 

Figure 1. The Basic Architecture of ANFIS [24] 
 
The main objective of ANFIS is to integrate the best 

features of fuzzy systems, through the representation of prior 
knowledge into a set of constraints (network topology) to 
reduce the optimization search space; and ANN through the 
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adaptation of the back-propagation to the structured network 
for automating the fuzzy system's parametric tuning. ANFIS 
is one of the best tradeoff between neural and fuzzy systems 
as it provides smoothness due to the fuzzy system's 
interpolation capability; and adaptability due to the ANN's 
back-propagation algorithm [25]. However, the major 
weakness of ANFIS lies in its strong computational 
complexity restrictions [25, 26]. Some of the advantages and 
disadvantages of ANFIS have been presented in [27]. 

The role of each layer of the ANFIS hybrid system is as 
follows [24]: 

• Layer 1: This takes input from the data. Every node is 
an adaptive node. The input parameters handled by 
this layer are called premise parameters. 

• Layer 2: Every node is fixed. The output is the product 
of all the incoming signals. Each node output 
represents the firing strength of a rule. This forms the 
core part of the Fuzzy Logic System component of the 
hybrid network. 

• Layer 3: Every node is fixed. Each calculates the ratio 
of the ith rule’s firing strength. Thus the outputs of this 
layer are called normalized firing strengths. 

• Layer 4: Every node is an adaptive node. Parameters 
are referred to as consequent parameters. This is the 
core part of the back-propagation algorithm of ANN 
in the hybrid system. 

• Layer 5: The single node in this layer is a fixed node. 
It computes the overall output as the summation of all 
incoming signals. 

In ANFIS, there are two information passes in the hybrid 
algorithm: forward pass and backward pass. In the forward 
pass, the node outputs go forward up to layer 4 while the 
consequent parameters are identified by the least squares 
method of the back-propagation algorithm. In the backward 
pass, the error signals propagate backwards down to layer 2 
where the premise parameters are updated by gradient descent 
algorithm of the Fuzzy Logic component. More details about 
the architecture of ANFIS can be found in [24]. 

 

C. Hybrid Computational Intelligence in Oil and Gas 

Some of the successful applications of Hybrid Computational 
Intelligence (HCI) are found in the bioinformatics, science, 
technology and engineering. These include the selection of 
winding material in electric power transformers using a 
hybrid of decision trees for attribute selection and neural 
networks for winding material classification for the 
calculation of the performance characteristics of each 
considered design [28]; and a hybrid of genetic programming 
approach and a heuristic rule-based scheme for the 
classification between different types of aphasia, a human 
syndrome, often due to brain damage [29]. These as well as 
others were discussed in [1]. Other applications of the 
advances of HCI include [30 - 32]. 

In petroleum engineering, HCI has been successfully 
applied in many areas such as seismic pattern recognition; 
porosity and permeability predictions; identification of 
sandstone lithofacies; drill bit diagnosis; and analysis and 
improvement of oil and gas well production.  
While appreciating the increased application of Functional 
Networks and Type-2 Fuzzy Logic as stand-alone CI 
techniques in studies such as [33] and [34], reference [21] 

proposed a FN-T2FL hybrid model that utilized the capability 
of the least-square fitting algorithm of FN to extract the most 
relevant attributes for the T2FL component. Their results, in 
addition to confirming that the FN-T2FL hybrid model 
performed better than the individual FN and T2FL techniques 
used individually, also demonstrated that there is more 
potential in the hybridization of existing techniques for better 
accuracy and increased characterization of oil and gas 
properties. Their work was motivated by the successful trials 
of various hybrid models such as [7] that produced 2-D 
fracture intensity and fracture network maps in a large block 
of field using Artificial Neural Network (ANN) and Fuzzy 
Logic (FL); [35] that used ANN to predict permeability from 
petrographic data while using Fuzzy Logic to screen and rank 
the predictor variables with respect to the target variable; and 
[36] that proposed a new method for the auto-design of ANN 
based on Genetic Algorithm. 

In [1], the authors built upon their experience on the success 
of FN-T2FL hybrid model to propose a FN-SVM hybrid 
model. They argued that the combination of Fuzzy Logic and 
Artificial Neural Networks (ANN) for the prediction of 
permeability by means of Flow Zone Index in [37]; the use of 
Genetic Algorithm (GA) to tune the parameters of ANN in 
[36]; the combination of Fuzzy Logic and GA for the 
optimization of gas production operations in [38]; and the use 
of any of GA, Fuzzy Logic and ANN in other studies [39 - 41] 
could not have been the best idea based on the following 
reasons: 

• Though, GA is a very robust optimization algorithm that 
is based on an exhaustive search paradigm, it is well 
known for its long execution time, its need for high 
processing power due to its computational complexity 
and sometimes inefficiency as it gets cut up in some 
local optima [42].  

• Fuzzy Logic becomes complex and time-consuming 
when applied on high-dimensional data [17] and 
performs poorly when applied on datasets of small size 
[22].  

• ANN is also known to suffer from many deficiencies 
such as having no general framework for the design of 
its appropriate network for a specific task and its 
frequent requirement of large number of parameters to 
fit a good network structure [43, 44]. 

ANFIS has been widely used in various application areas 
most especially bioinformatics [45, 46], environmental 
sciences [47], image processing [48], manufacturing 
engineering [49 - 51], finance [52, 53], and mining [54]. In the 
prediction of permeability of oil and gas reservoirs, no study 
was found in literature that compares ANFIS as a hybrid 
model with any other proposed hybrid system for 
investigating possible improvements in performance 
accuracy. Few available studies compared ANFIS with other 
techniques such as the conventional porosity-permeability 
transform [39], multi-linear regression technique [41], ANN 
and conventional empirical transformation [55]. 

A closely related study to this work is [11]. However, the 
authors used three hybrid components comprising of FN, 
T2FL and SVM to propose two hybrid models. In the analysis 
of the three-component hybrid models, some redundancies 
were introduced by the presence of T2FL and SVM 
components as their inclusion in the hybrid system could not 
be adequately justified. The presence of the three components 
also made the entire hybrid system too complex to analyze.  



This paper further seeks to investigate the capability and 
robustness of the FN-T2F and FN-SVM models in 
comparison with ANFIS, the first and the only standard 
hybrid model (to the best of our knowledge) to be technically 
and commercially available in the MATLAB Toolbox [23] 
which is the most widely used tool for most technical 
computing applications in both industry and the academia. 

 

III. Description of Data, Experimental Design 
and Model Framework 

A. Description of Data 

In order to establish a strong basis for a fair comparison, the 
same sets of porosity and permeability datasets from six wells 
(three for porosity and three for permeability) that were used 
for the testing and evaluation of FN-T2FL [22] and FN-SVM 
[1] models were also used in this study. Site 1, a 
heterogeneous platform that is made up of carbonate and 
dolomite, contains six predictor variables for porosity while 
site 2, majorly of carbonate and sandstone formations, 
contains twelve predictor variables for permeability. Hence, 
the datasets are representative of the major oil-bearing 
geological formations found in most parts of the oil-producing 
world. 
 

B. Experimental Design 

The hybrid computational intelligence and machine learning 
approaches form the basis of the methodology employed in 
this study. 

1) Design of FN-T2F and FN-SVM Frameworks 

For the purpose of avoiding repetition of methodologies in 
this paper, readers are referred to [1] and [21] for the detailed 
design framework, methodologies and optimized parameters 
employed in the design of the FN-SVM and FN-T2F hybrid 
models respectively.  

As shown in Figure 2, the FN-T2F hybrid model is 
composed of two blocks containing, respectively: FN and 
T2FL. In the FN block, the training procedure that uses the 
least-squares fitting algorithm was incorporated to select the 
best variables from the input data. The output of this block, 
the most relevant attributes of the input data, were then 
divided into training and test sets. The training set was used to 
train the T2FL model’s Gradient-Descent approach and a 
Gaussian membership function while optimizing the model 
parameters. The trained hybrid model was then evaluated 
using the testing data subset.  

Figure 3 shows the design framework of the FN-SVM 
hybrid model. Similar to the FN-T2F, the FN component was 
used as a best-subset selector for the SVM component. The 
most relevant attributes from the input data outputted by the 
FN block were divided into training and testing subsets. The 
training subset was used to train the SVM component which 
was later used to predict the target variable in the testing 
subset with the actual values hidden from the system to test its 
generalization capability. 

 
2) Design of the ANFIS Hybrid Model 

The framework of the ANFIS hybrid model used in this study was the 
one proposed by [23], which is available in the MATLAB Toolbox 

[26], but extracted, customized and combined with other functions. 
The general behavior of ANFIS is described in [44] as:  
 
Rule 1: IF (x11 = A11),  (x12 = A12), ... , and (x1m = A1m) THEN (f1 
= p1x1  + q1x1 + r1) 
 
Rule 2: IF (x21 = A21), (x22  = A22), ... , and (x2m = A2m)THEN (f2 
= p2x  + q2y + r2) 
 
. 
. 
. 
 
Rule n: IF (xn1 = An1),  (xn2 = An2), ... , and (xnm = Anm) THEN (fn 
= pnx  + qny + rn) 
 

where xi  are the inputs, Anm are the fuzzy sets and fi  are the 
outputs within the fuzzy region specified by the fuzzy rule, pn. 
qn, and rn are the design parameters that are determined during 
the training process. 

Three versions, based on the training algorithm, of the 
ANFIS hybrid model were used in this study viz. Grid 
Partitioning, Subtractive Clustering and Fuzzy C-Means 
Clustering. The ANFIS with Grid Partitioning (ANFIS-GP) 
was used to generate a single-output Sugeno-type fuzzy 
inference system (FIS) using a grid partition on the data (no 
clustering). The outputs of the adaptive nodes in layer 1 are 
fuzzy membership grade of the inputs, which are generally 
given by: 

 
��

1 = μ����		� = 1, 2 
 
and 
 

��
1 = μ
�−2

��		� = 3, 4 
 

 
where μ��

��	 and  μ
�−2
��	are fuzzy membership 

functions. 
 
Several input Membership Functions (MFs) were tried 

with linear and constant output MFs. All the MFs with linear 
output MF were found to be over-fitting (Figure 4). However, 
Gaussian and bell-shaped MFs with constant output MF were 
found to be highly competitive in performance. A further 
comparative investigation showed that the Gaussian MF is 
optimal for this problem, especially the porosity data (Figure 
5). This agrees with literature [56] that presents the Gaussian 
MF as the best for most applications. The Gaussian input MF 
is given by: 

μ��
��	 = ��� �− ���−�	2

2��2
� 

 

 

where �� and ��
2 are the centre and width of the i th fuzzy set 

�� respectively. 

The fixed layer 2 nodes serve the role of a simple multiplier. 
The outputs of this layer, the firing strengths of the rules, can 
be represented as: 

 

(1) 

(2) 

(3) 

416  Anifowose, Labadin and Abdulrameen



                                                   417
 

��
2 = �� = μ��

��	μ
�
��				� = 1, 2 

 

The fixed layer 3 nodes play a normalization role to the 
firing strengths from the previous layer 2. The outputs of this 
layer, the normalized firing strengths, can be represented as: 
 

��
3 = �� =

��
�1+�2

					� = 1, 2 

 
In layer 4, the output of each adaptive node in this layer is 

simply the product of the normalized firing strength and a first 
order polynomial (for a first order Sugeno model). This is 
given by: 
 

��
4 = ���� = ������ + ��� + �� 				� = 1, 2 

 
In the layer 5, the only one single fixed node performs the 

summation of all incoming signals. Hence, the overall output 
of the model is given by: 

 

��
5 = ∑ ���� =

�∑ ����
2
�=1 	
�1+�2

2
�=1  

 
The ANFIS with Subtractive Clustering (ANFIS-SC) was 

used to generate a FIS by first applying subtractive clustering 
on the data. This is accomplished by extracting a set of rules 
that models the data behavior by first using the subclust 
function to determine the number of rules and antecedent 
membership functions and then using linear least squares 
estimation to determine each rule's consequent equations. 
Different optimal radii were found for the porosity and 
permeability datasets. For the porosity datasets, 0.7 is optimal 
(Figure 6, 7, 8) while for the permeability datasets, 1.6 was 
found to be optimal (Figure 9, 10, 11). It would be noted that 
Figure 8 shows that ANFIS, similar to Type-2 Fuzzy Logic is 
also vulnerable to overfitting when handling small datasets 
[16].  

The ANFIS with Fuzzy C-Means Clustering was used to 
generate a FIS using FCM clustering by extracting a set of 
rules that models the data behavior. The rule extraction 
method first uses the fcm function to determine the number of 
rules and membership functions for the antecedents and 
consequents. Different number of clusters was also found for 
the porosity and permeability datasets. This is summarized in 
Table 1 and shown respectively for each well in Figure 12 - 
17. 

To further ensure a solid basis for fair comparison, the 
ANFIS models were run in 50 iterations and the average 
values of the evaluation criteria were recorded. 

 

Table 1. Optimal Number of Clusters for Datasets. 

Data Set Optimal Number of 
Clusters 

Site 1 Well 1 4 
Site 1 Well 2 4 
Site 1 Well 3 2 
Site 2 Well 1 2 
Site 2 Well 2 2 
Site 2 Well 3 2 

 

C. Model Evaluation Criteria 

Similar to the previously published FN-T2F and FN-SVM; 
and in order to ensure a fair comparison with ANFIS, the 
performance of the models was evaluated using the 
correlation coefficient (CC), root mean-squared error (RMSE) 
and execution time (ET). CC measures the statistical 
correlation between the predicted and actual values. RMSE is 
one of the most commonly used error measures of success for 
numeric prediction as it computes the average of the squared 
differences between each predicted value and its 
corresponding actual value. ET is simply the total time taken 
for a technique to run from the beginning to its end using the 
CPU time. 
  

IV. Experimental Results and Discussion 

A. Experimental Results 

The ANFIS-GP model only worked with the porosity datasets 
and not with the permeability datasets. This is due to the 
inability of the model to handle such datasets of 12 attributes. 
However, the results of the comparison of ANFIS-SC and 
ANFIS-FCM with FN-T2F and FN-SVM are shown in Figure 
18 - 23.  Since the main focus of any machine learning task is 
to investigate its generalization capability and in order to 
reduce the volume of figures presented in this paper, only the 
comparative results of testing are presented. The comparative 
result of the CC and RMSE for all the 3 porosity wells are 
shown in Figure 18 and 19 respectively while their ET 
comparison for training and testing are shown in Figure 20. 
Similarly, the comparative result of the CC and RMSE for all 
the 3 permeability wells are shown in Figure 21 and 22 
respectively while their ET comparison for training and 
testing are shown in Figure 23.  
 

B. Discussion of Results 

The results showed that, in terms of CC, the FN-SVM hybrid 
model outperformed all the other hybrid models with the 
highest accuracy as shown in Figure 18. In terms of RMSE, 
FN-SVM has the lowest value. This is conversely equivalent 
to the CC result (Figure 19). In terms of ET, FN-T2F took the 
most time for training and testing (Figure 20). The 3 versions 
of ANFIS equally demonstrated their capabilities by showing 
competitive performances and at faster speed of execution 
than FN-T2F and FN-SVM. It would be noted that all the 
predictions are not perfect since real-life operational field 
datasets were used. 

For permeability, the FN-SVM hybrid model has the 
highest CC and the lowest RMSE demonstrating its superior 
predictive capability over the other two models (Figure 21 and 
22). The more the correlation between the actual and the 
predicted target variables, the less the root mean square error 
is expected to be. Also, in terms of execution time, FN-T2F 
took the most time for training and testing (Figure 23).  

The excellent performance of FN-SVM can be attributed to 
the reduced dimensionality of the data fed into the SVM block 
of the hybrid model. It is further due to the role of the least 
square fitting algorithm of the FN block in the extraction of 
the most relevant input variables for the training and testing of 
the SVM block. This ensures that the SVM block used only 

(4) 

(5) 

(6) 

(7) 
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the best of the input variables and hence is not corrupted by 
the redundant and irrelevant variables from the original 
datasets. 

The dimensionally-reduced dataset that was used by the 
SVM block from the output of the FN block also ensured that 
the data matrix used in the execution of the SVM block is less 
complex despite than SVM is originally “light-weight”. In 
addition to the reports that SVM scales relatively well with 
high dimensional data [8, 10, 15], we further argue that SVM 
can be improved by reducing the dimension of the input data 
through best subset selection. This will have the double effect 
of reducing the training time and further increasing the 
accuracy of the prediction process. 

Based on the result of this study, FN-T2F did not perform 
as well as FN-SVM. A question could be asked here: Why did 
T2F not derive as much benefit from the FN block as SVM? 
We argue that this is due to the peculiar qualities of SVM such 
as its ability to handle small data and scalability to 
high-dimensional data which T2F do not possess.  

It can be said that despite the superiority of FN-SVM, all 
the other models are very competitive in their performance, 
especially with the porosity datasets. Again, we argue that this 
is partly due to the efficiency of the grid partition, subtractive 
clustering and Fuzzy C Means algorithms. The “No Free 
Lunch Theory” [2] still holds true here despite the excellent 
performance of FN-SVM such that we may not conclude that 
the FN-SVM hybrid model is absolutely the best. Other 
hybrid models might perform better or equally good in some 
other data scenarios such as in the case of permeability 
datasets where the grid partitioning algorithm of ANFIS did 
not work. 

V. Conclusion and Future Work 

A detailed comparative study of Functional 
Networks-Type-2 Fuzzy Logic, Functional Networks-Support 
Vector Machines and 3 versions of Adaptive Neuro-Fuzzy 
Inference System with grid partition, subtractive clustering 
and fuzzy C-means is presented in this paper. The 
comparisons were based on the prediction of porosity and 
permeability of oil and gas reservoirs from 6 different datasets 
obtained from diverse fields with different lithological and 
geological formations. The results showed that the FN-SVM 
hybrid model showed superior performance with the highest 
correlation coefficients, lowest root mean square errors but 
taking longer time to execute than the 3 ANFIS algorithms.  

Based on the results of this study, we conclude as follows: 
� The superior performance of the FN-SVM hybrid 

model is due to the dual role of FN to select the best 
and most relevant input variables; and the consequent 
reduction in the dimensionality of the data that was 
used by the SVM block. 

� The subset selection process performed by the FN 
block contributed to the further improvement in the 
performance accuracy of the hybrid model while the 
reduced dimensionality of the input data reduced the 
time and space complexity of the SVM block, thereby 
reducing the overall processing time than that of the 
FN-T2F model. 

� Despite that SVM has proven to be robust with small 
datasets and scalable with high-dimensional data, it can 

be further improved by reducing the dimension of the 
input data through best subset selection. 

� FN-T2F took the most time for training and testing due 
to the inherent complexity of the gradient descent 
algorithm of the T2F component [16]. 

� ANFIS with grid partitioning performed competitively 
with the porosity datasets with 5 attributes but could 
not handle the complexity introduced by the 12 
attributes of permeability datasets. This is in line with 
what has been reported about ANFIS [24, 25]. 

� The 3 versions of ANFIS used in this study are equally 
good and demonstrate competitive capabilities due to 
the excellent performance of the grid partitioning, 
subtractive clustering and the fuzzy C-means 
algorithms. 

� ANFIS, like Type-2 Fuzzy Logic, could not perform 
well in cases of small datasets and high dimensional 
data [16]. 

� On the average, the outperformance of FN-SVM over 
all the other models might be marginal. However, a 
little improvement in the accuracy of the prediction of 
oil and gas reservoir properties may result in the 
increased exploration, production and exploitation of 
more energy and huge increase in the capital base of 
the oil industry. 

� The main contributions of this study are to prove the 
potentials of computational intelligence hybrid models 
in the petroleum industry and to demonstrate that other 
models, though not optimal, also have their possible 
positions in solving real industry problems. 
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Figure 2. Conceptual Framework of the FN-T2FL Hybrid Model [22] 

 
 
 

 

 

 

 

 

 
 

Figure 3. Conceptual Framework of the FN-SVM Hybrid Model [1] 
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Figure 4. Input MFs with Linear Output MF showing Over-fitting. Figure 5. Comparison of Input MFs with Constant Output MF. 

 

 
Figure 6. Optimal Radii for ANFIS-SC with Site 1 Well 1 Dataset 

 
 

  
Figure 7. Optimal Radii for ANFIS-SC with Site 1 Well 2 Dataset 
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Figure 8. Optimal Radii for ANFIS-SC with Site 1 Well 3 Dataset 
 

 
Figure 9. Optimal Radii for ANFIS-SC with Site 2 Well 1 Dataset 

 
 

  
Figure 10. Optimal Radii for ANFIS-SC with Site 2 Well 2 Dataset 

0.4 0.5 0.6 0.7 0.8 0.9 1

0.4

0.5

0.6

0.7

0.8

0.9

1

Radii

C
C

Optimal Radii for SC ANFIS using CC

 

 

Training

Testing

0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

Radii

R
M

S
E

Optimal Radii for SC ANFIS using RMSE

 

 

Training

Testing

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Radii

C
C

Optimal Radii for SC ANFIS using CC

 

 

Training

Testing

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

5

10

15

20

25

30

Radii

R
M

S
E

Optimal Radii for SC ANFIS using RMSE

 

 

Training

Testing

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Radii

C
C

Optimal Radii for SC ANFIS using CC

 

 

Training

Testing

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

5

10

15

20

25

30

35

40

Radii

R
M

S
E

Optimal Radii for SC ANFIS using RMSE

 

 
Training

Testing

422  Anifowose, Labadin and Abdulrameen



 423 

  
Figure 11. Optimal Radii for ANFIS-SC with Site 2 Well 3 Dataset 

 
 

  
Figure 12. Optimal Clusters for ANFIS-FCM with Site 1 Well 1 Dataset 

 
 

Figure 13. Optimal Clusters for ANFIS-FCM with Site 1 Well 2 Dataset 
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Figure 14. Optimal Clusters for ANFIS-FCM with Site 1 Well 3 Dataset 

 
 

  
Figure 15. Optimal Clusters for ANFIS-FCM with Site 2 Well 1 Dataset 

 
 

  
Figure 16. Optimal Clusters for ANFIS-FCM with Site 2 Well 2 Dataset 
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Figure 17. Optimal Clusters for ANFIS-FCM with Site 2 Well 3 Dataset 

 
 

  

Figure 18. Testing CC Comparison for Porosity Datasets Figure 19. Testing RMSE Comparison for Porosity Datasets 
 
 

  

Figure 20. Training and Testing Run Time Comparison for Porosity Datasets 
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Figure 21. Testing CC Comparison for Permeability Datasets Figure 22. Testing RMSE Comparison for Permeability 
Datasets 

 
 

  

Figure 23. Training and Testing Run Time Comparison for Permeability Datasets 
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