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Abstract: A T -Direct code is defined as the set of T F -ary lin-
ear codes Γ1,Γ2, . . . ,ΓT such that Γi ∩ Γ⊥i = {0}, where Γ⊥i =
Γ1 ⊕ Γ2⊕ · · · ⊕ Γi−1⊕ Γi+1 ⊕ · · · ⊕ ΓT is the dual of Γi with
respect to the direct sum Λ = Γ1 ⊕ Γ2⊕ · · · ⊕ ΓT for each i =
1, 2, . . . , T . In this paper, a construction to a class of T -Direct
codes with the constituent codes from the class of 2-Cyclic Max-
imum Rank Distance codes is given. These class of codes are
defined with a Rank metric. An application of the constructed
class of codes over the T -user F -Adder Channel, namely a cod-
ing scheme for the noisy case, is given. In an attempt to show
the usefulness of T -Direct codes as multi-user codes, a distance
construction method for the class of T -Direct codes constituted
by a set of T maximum rank distance codes is proposed. The
proposed distance construction is shown to increase the mini-
mum distance of the constituent codes of T -Direct codes when
employed. Further, a construction procedure that constructs
(n + m)-Direct codes over GF (2n) is developed from the pro-
posed distance construction, 0 < m ≤ n(n+1)

2
. It is shown

that the extended distance construction procedure increases the
number of users (constituent codes) of a T -Direct code; when
employed on an n-Direct code, it constructs an

[
n(n+1)

2

]
-Direct

code, thereby supporting more users in a multi-user environ-
ment.
Keywords: LCD codes, T -Direct codes, MRD codes, q-Cyclic
MRD codes, T -user F -Adder Channel, Kronecker product.

I. Introduction

The coding problem for a multi-user communication system
is to assign codes to each user so that they can communi-
cate simultaneously over a common channel with a single re-
ceiver. The study of multiple-access communication systems
was first initiated by Shannon in 1961 - he studied the two-
way communication channels and also bounds on the capac-
ity region were established [1]. Several authors investigated
the information-theoretic aspects of multiple-access channels
[3]-[7]. In the literature, there has been extensive research
work on the coding schemes and capacity calculations for a
multiple access channel known as the binary adder channel
[9], [10], [11], [14]. Various aspects of multiple access chan-
nels were also given in [2], [12].

In recent years, linear network coding has been a promising

new approach to information dissemination over networks.
Some of upcoming technologies which attracted research at-
tention in the recent years are Wireless Sensor Networks
(WSNs) [28] and Voice over Internet Protocol (VoIP) [29]. A
study on the multi-user F -Adder Channel has been discussed
in [16], [17], where a coding scheme is given using Reed-
Solomon codes. The problem of error control in network
coding had been discussed in [21]-[26], where an additive-
multiplicative matrix channel was considered as a model for
network coding. Recently, a coding problem of communicat-
ing messages between multiple sources and destinations over
a general noisy network is considered [33]. In connection to
the network coding problem, a coding scheme for the T -user
F -Adder Channel had been studied in [18], [19] where the
class of T -Direct codes are introduced and shown to be ef-
fective in coding for the noiseless scenario. This class of
multi-user codes is an extension to the so called linear codes
with complementary duals (LCD codes) [15]. For an arbi-
trary finite field F , an F -ary linear code Γ is called an LCD
code if Γ ∩ Γ⊥ = {0}. An F -ary T -Direct code or sim-
ply a T -Direct code is defined as the set of T F -ary linear
codes Γ1,Γ2, . . . ,ΓT such that Γi ∩ Γ⊥i = {0}, where Γ⊥i =
Γ1⊕Γ2⊕ · · ·⊕Γi−1⊕Γi+1⊕· · ·⊕ΓT is the dual of Γi with
respect to the direct sum Λ = Γ1 ⊕ Γ2⊕· · · ⊕ ΓT ⊆ Fn for
each i = 1, 2, . . . , T denoted by (Γ1,Γ2, . . . ,ΓT ); each Γi
is called the constituent code [18]. Unlike the binary adder
channels which are real-number adder channels, arithmetic
operations on the channel alphabets (elements of the field F )
in F -Adder Channel are performed under the operations de-
fined in the underlying field F .

Our main objective in this paper is to explore some of the
interesting coding characteristics enjoyed by the class of
GF (2n)-ary T -Direct codes and thus showing the useful-
ness of T -Direct codes in a multi-user environment. To fa-
cilitate our objective, first we present a coding scheme for
the T -user F -Adder Channel (for noisy case) by incorpo-
rating the ideas of the class of T -Direct codes. The coding
scheme is accomplished by constructing a class of T -Direct
codes with constituent codes from the class of 2-cyclic MRD
codes. Using the constructed class of T -Direct codes (T -
Direct 2-cyclic MRD codes), the coding for the noisy T -user
F -Adder Channel is described. The class of Rank Distance
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codes is a newer branch of Algebraic coding theory and is
introduced by E. M. Gabidulin in 1985 [13]. Some useful
applications of Rank Distance codes are discussed in [30],
[32], [34].

Further, a construction method is proposed for the class of
T -Direct codes to increase the minimum distance of the con-
stituent codes. Since the proposed construction procedure
increases the minimum distance of the constituent codes of
a T -Direct code when employed, it is termed as the distance
construction. Further, the distance construction is extended
to increase the number of users (constituent codes) of a T -
Direct code: the procedure when employed on an n-Direct
code defined over GF (2n) constructs an

[
n(n+1)

2

]
-Direct

code over the same field GF (2n). For both the construc-
tions, the Kronecker product is used as a basic tool.

The remaining part of the paper is organized as follows. The
following section presents the basic definitions and notations,
in order to make this paper self-contained. In section III, we
make an interesting observation that a certain class of Rank
Distance codes qualify to be LCD codes. Further, a construc-
tion to a class of T -Direct codes with constituent codes being
Rank Distance codes is presented. Section IV describes an
application of the constructed class of T -Direct codes over
the noisy T -user F -Adder Channel. The section V proposes
a distance construction procedure for the class of T -Direct
codes, as outlined in [31]. Section VI gives a code construc-
tion for the class of T -Direct codes defined overGF (2n) that
is based on the distance construction procedure proposed.
This extended distance construction procedure enables the
class of 2n-ary n-Direct codes to allow more users to partic-
ipate in the channel under consideration; n < T ≤ n(n+1)

2
- precisely. Final section draws the conclusion based on the
results.

II. Preliminary Ideas

This section describes some fundamentals of rank distance
codes introduced by Gabidulin in 1985 and T -Direct codes.
Let V n be an n-dimensional vector space over the field
GF (qN ), where q is a power of a prime and n ≤ N . As-
sume that u1, u2, . . ., uN is some fixed basis of the field
GF (qN ), regarded as a vector space over GF (q). Any ele-
ment xi ∈ GF (qN ) can be uniquely represented in the form
xi = a1iu1 + a2iu2+ · · · + aNiuN . Let x = (x1, x2, . . . , xn)
∈ V n and AnN be the collection of all N × n matrices over
GF (q). Associated with each x ∈ V n, the N × n matrix
denoted by A(x) is defined as

a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

aN1 aN2 · · · aNn


Definition 2.1 [13] The rank of a vector x ∈ V n over
GF (qN ) is defined as the rank of the matrix A(x) and is
denoted by r(x; q). The norm r(x; q) specifies a rank metric
on V n as d(x, y) = r(x− y; q) for all x, y ∈ V n.

Definition 2.2 [13] A linear (n, k, d) code which is a k-
dimensional subspace of V n is said to be a Rank Distance

(RD) code if its metric is induced by the rank norm. An
(n, k, d) RD code is said to be Maximum Rank Distance
(MRD) code if d = n - k + 1. Here d is the minimum dis-
tance of the code and is defined as the minimum rank any
non-zero codeword can have.

Definition 2.3 [13] An (n, k, d) RD code Γ is called
q-Cyclic if q-Cyclic shift of any code vector is also a
code vector, i.e., if (c0, c1, . . . , cn−1) belongs to Γ, then
(c

[1]
n−1, c

[1]
0 , . . . , c

[1]
n−2) also belongs to Γ, where and here af-

ter we use the notation: [m] = qm for some positive integer
m.

Definition 2.4 [13] An (n, k, d) q-Cyclic code with d = n −
k + 1, termed as q-Cyclic MRD code, is generated by the
generator matrix G defined as follows:

G =


α[0] α[1] · · · α[n−1]

α[1] α[2] · · · α[n]

...
...

. . .
...

α[k−1] α[k] · · · α[k+n−2]


where {α[0], α[1], . . . , α[n−1]} forms a normal basis in
GF (qn). The paper considers the case when n = N .

For an arbitrary finite field F , the class of F -ary T -Direct
codes are a natural extension to the class of linear codes with
complementary duals. The following theorem gives the nec-
essary and sufficient condition for a set of T F -ary linear
codes to constitute a T -Direct code.

Theorem 2.5 [18] Let Γi be an (n, ki) F -ary linear code with
the generator matrix Gi such that GiGjT = (0) for each i =
1, 2, . . . , T with i 6= j. Then (Γ1,Γ2, . . . ,ΓT ) is a T -Direct
code if and only if the ki × ki matrix GiGT

i is non-singular
for every i. Further, if (Γ1,Γ2, . . . ,ΓT ) is a T -Direct code,
then ΠΓi = GT

i (GiG
T
i )−1Gi is the orthogonal projector

from Λ = Γ1 ⊕ Γ2 ⊕ · · · ⊕ ΓT onto Γi for each i.

T -user F -Adder Channel 2.6 Given any finite field F , the
F -Adder Channel is described as the channel whose inputs

γ1
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Q
Q
Q
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r′ = γ1 + γ2 + · · ·+ γT + e

γ3 -����
-+.

.

.
γT �

�
�
�
�
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Fig. 1: Noisy T -user F -Adder Channel

are elements of F and the output is the sum (over F ) of the
inputs. It is important to note that, unlike the adder channel,
the addition performed is not the real addition but a mod-
ulo addition defined in the underlying field F . The reader is
advised to refer [16] and [17] for more details on F -Adder
Channel. In this communication system, the T users send
the T n-tuples say γ1, γ2, . . . , γT respectively from the F -
ary linear codes Γ1,Γ2, . . . ,ΓT . When the channel is noise-
less, the received sequence r is the componentwise sum r =
γ1 + γ2 + · · · + γT over F . The problem for the receiver is
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to decode the received sequence r into the actual codewords
γ1, γ2, . . . , γT originally transmitted. The class of T -Direct
codes provides a solution to this problem [18].

In the noisy case, as depicted in figure 1, the received se-
quence r′ is the componentwise sum r′ = γ1 + γ2 + · · · +
γT + e where the n-tuple e is an error induced by the noisy
channel. Here, the problem for the receiver is to employ an
efficient error-correcting decoding technique to decode the
received sequence r′ = γ1 + γ2 + · · · + γT + e into the
actual codewords γ1, γ2, . . . , γT originally transmitted. The
class of T -Direct 2-Cyclic MRD codes constructed in section
3 provides a solution to this problem, where it is explained
how the constructed class of T -Direct codes can be effec-
tively employed over the noisy T -user F -Adder Channel.

Notation and abbreviation 2.7 We use the nota-
tion ({n1, n2, . . . , nT }, {k1, k2, . . . , kT }, {d1, d2, . . . , dT })
to denote a T -Direct code constituted by the constituent
codes (n1, k1, d1), (n2, k2, d2), . . ., (nT , kT , dT ) and is ab-
breviated as ({ni}, {ki}, {di}). In particular, a T -Direct
code with k1 = k2 = · · · = kT = k (say) is denoted
by ({ni}, {k}, {di}) rather than ({ni}, k, {di}) - to distin-
guish a T -Direct code from a conventional single user code,
namely (n, k, d). Also, note that, when we consider qn-ary
(n, k, d) MRD codes in association with F -Adder Channel,
the channel alphabets would be the elements from the under-
lying field GF (qn); i.e., F = GF (qn).

III. T -Direct q-Cyclic MRD Codes

By a T -Direct q-Cyclic MRD code, we mean a T -Direct
code with constituent codes from the class of q-Cyclic MRD
codes. Our objective in this section is to give a construction
to the class of T -Direct 2-Cyclic MRD codes. Before that,
we make an interesting observation of the class of 2-Cyclic
MRD codes.

A. 2-Cyclic MRD Codes as Complementary Duals

This subsection identifies certain class of Rank Distance
codes which are LCD codes. This observation allows us to
choose these Rank Distance codes, having complementary
duals as constituent codes, in the construction of T -Direct 2-
Cyclic MRD codes. The results of this subsection are drawn
from [20].

Proposition 3.1.1 An (n, k, d) 2-Cyclic MRD code defined
by the matrix

G =


α[0] α[1] · · · α[n−1]

α[1] α[2] · · · α[n]

...
...

. . .
...

α[k−1] α[k] · · · α[k+n−2]


with {α[0], α[1], . . ., α[n−1]} being a trace-orthogonal basis
in GF (2n) is an LCD code.

Proof: In order to prove that the code, say Γ, generated by
G is an LCD code, one has to prove that the k × k matrix
GGT is non-singular [15]. Since {α[0], α[1], . . ., α[n−1]}
being a trace-orthogonal basis inGF (2n), the k row-vectors
are orthonormal vectors. It follows that GGT = I, where I
denotes the identity matrix. Thus, GGT is non-singular.

In the above proposition, it is proved that the class of
(n, k, d) 2-Cyclic MRD codes defined by the generator ma-
trices with a trace-orthogonal basis being the first row are
LCD codes. For a positive integer r, a trace-orthogonal ba-
sis {α1, α2, . . . , αr} is a basis of GF (2r) over GF (2) with
the property that tr(αıαj) = δıj , 1 ≤ αıj ≤ r for all ı
and j, where tr is the absolute trace from GF (2r) to GF (2)

defined as tr(α) =
∑r−1
ı=0 α

2ı

. The existence of a trace-
orthogonal basis of GF (2r) over GF (2) for arbitrary value
of r has been established in [8].

The following theorem gives a sufficient condition for a set
of T F -ary linear codes Γ1,Γ2, . . . ,ΓT to constitute a T -
Direct code (Γ1,Γ2, . . . ,ΓT ).

Theorem 3.1.2 Let Γi be an (n, ki) F -ary linear code
with generator matrix Gi for each i = 1, 2, . . . , T . Then
(Γ1,Γ2, . . . ,ΓT ) is a T -Direct code if the k1 +k2 + · · ·+kT
row-vectors of G1, G2, . . . , GT are orthonormal vectors in
Fn.

Proof: Since the row-vectors of G1, G2, . . . , GT are or-
thonormal, GiGT

j = (0) and GiGT
i = I for each i with i 6= j,

where I is the ki×ki identity matrix. Thus, by Theorem 2.5,
the T F -ary linear codes with the generator matrices having
orthonormal row-vectors constitute a T -Direct code.

B. Construction of T -Direct 2-Cyclic MRD Codes

Let {α[0], α[1], . . ., α[n−1]} be a trace-orthogonal basis in
GF (2n). Let k1, k2, . . ., kT ≥ 0 be a set of positive integers
such that k1 + k2 + · · · + kT ≤ n. We choose (n, k1, d1),
(n, k2, d2), . . ., (n, kT , dT ) 2-Cyclic MRD codes Γ1, Γ2,
. . ., ΓT with the generator matrices Gk1 , Gk2 , . . ., GkT re-
spectively defined as

Gk1 =


α[0] α[1] · · · α[n−1]

α[1] α[2] · · · α[n]

...
...

. . .
...

α[k1−1] α[k1] · · · α[k1+n−2]



Gk2 =


α[δ1] α[δ1+1] · · · α[δ1+n−1]

α[δ1+1] α[δ1+2] · · · α[δ1+n]

...
...

. . .
...

α[δ1+k2−1] α[δ1+k2] · · · α[δ1+k2+n−2]


...

GkT =


α[δT−1] · · · α[δT−1+n−1]

α[δT−1+1] · · · α[δT−1+n]

...
. . .

...
α[δT−1+kT −1] · · · α[δT−1+kT +n−2]


where δi = k1 + k2 + · · ·+ ki for each i = 1, 2, . . . , T .

Since {α[0], α[1], . . . , α[n−1]} being a nor-
mal basis in GF (2n), the set {α[k1+···+ki−1],
α[k1+···+ki−1+1], . . . , α[k1+···+ki−1+n−1]} also forms a
normal basis in GF (2n) for each i = 1, 2, . . . , T . Thus Gki
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indeed defines an (n, ki, di) 2-Cyclic MRD code Γi for each
i = 1, 2, . . ., T . Let Λ = Γ1⊕Γ2⊕· · · ⊕ΓT . The T 2-Cyclic
MRD codes generated by the generator matrices Gk1 , Gk2 ,
. . . , GkT defined above in fact constitute a T -Direct code as
the following theorem states.

Theorem 3.2.1 Let Γi denote the (n, ki, di) 2-Cyclic MRD
code generated by the generator matrix Gki defined above
for each i. Then (Γ1, Γ2, . . ., ΓT ) is a T -Direct code.

The proof is straightforward from theorem 3.1.2. It then fol-
lows that, (Γ1, Γ2, . . ., ΓT ) being a T -Direct code, the or-
thogonal projector ΠΓi from Λ onto Γi defined as rΠΓi =
rGT

ki
(GkiG

T
ki

)−1Gki = rGT
ki
Gki for all r ∈ Λ exists for

each i = 1, 2, . . . , T [18]. When employing T -Direct codes
over the T -user F -Adder Channel, the orthogonal projector
plays a vital role in decoding the received sequence in both
the noiseless and noisy cases, as can be seen in the next sec-
tion.

IV. Coding for the noisy T -User F -Adder
Channel

Let F be a Galois field with characteristic 2, namely F =
GF (2n) - unless otherwise specified. Consider the noisy
T -user F -Adder Channel. Let Γ1, Γ2, . . . , ΓT respec-
tively denote (n, k1, d1), (n, k2, d2), . . . , (n, kT , dT ) 2-
Cyclic MRD codes with their respective generator matri-
ces Gk1 , Gk2 , . . . , GkT (defined as in section III) such that
(Γ1,Γ2, . . . ,ΓT ) is a T -Direct code. Let K = k1 + k2 +
· · ·+ kT and D = n−K + 1.

Let G =


Gk1
Gk2

...
GkT


be the K × n matrix with the K row-vectors from the gener-
ator matrices Gk1 , Gk2 , . . . , GkT . Let H be such that GHT

= (0).

By the very construction of G, it defines an (n,K,D) 2-
Cyclic MRD code with complementary duals. Let Γ denote
the (n,K,D) 2-Cyclic MRD code defined by G. Being an
LCD code, the orthogonal projector ΠΓ from [GF (2n)]n

onto Γ defined as rΠΓ = rGT(GGT)−1G for all r ∈
[GF (2n)]n exists [15]. Also note that if γi ∈ Γi for each
i = 1, 2, . . . , T , then γ1 + γ2 + · · ·+ γT ∈ Γ.

Suppose that the T users send the T codewords, say
γ1, γ2, . . ., γT respectively from the constituent codes
Γk1 , Γk2 , . . ., ΓkT of the T -Direct 2-Cyclic MRD code
(Γk1 ,Γk2 , . . . ,ΓkT ). As described, in this noisy channel,
the received vector r′ is γ1 + γ2 + · · · + γT + e over
GF (2n), where e = (e1, e2, . . . , en) ∈ [GF (2n)]

n is an
error-vector. Assume that the rank of the error-vector e is
m ≤ b(D − 1)/2c. The receiver recovers the codewords
γ1, γ2, . . . , γT from r′ as described below. The decoder first
computes the syndrome of the received vector. The syn-
drome S of the received vector r′ is,

S = r′HT

= (γ1 + γ2 + · · ·+ γT + e)HT

= (0) + eHT [since γiH
T = (0) ∀ i]

= eHT

= (s0, s1, . . . , sD−2).

The receiver then determines the error-vector e by apply-
ing an error-correcting decoding technique of the underlying
code Γ. Then r = r′−e = γ1 +γ2 + · · ·+γT is the sum of the
codewords γ1, γ2, . . ., γT overGF (2n). The decoder’s prob-
lem now reduces to finding the codewords γ1, γ2, . . . , γT
from r = γ1 + γ2 + · · · + γT . To find the codewords γ1,
γ2, . . ., γT , the receiver simply applies the orthogonal pro-
jector ΠΓi

= (GkiG
T
ki

)−1Gki on r for each i,

rΠΓi
= (r′ − e)ΠΓi

= (γ1 + · · ·+ γi + · · ·+ γT )ΠΓi

= γiG
T
ki(GkiG

T
ki)
−1Gki

= γiG
T
kiGki (since GkiG

T
ki = I)

= γi.

In this way, the transmitted codewords γ1, γ2, . . ., γT are
retrieved from the received vector r′ successfully.

V. The Distance Construction

Let k1, k2, . . ., kn ≥ 0 be a set of positive integers such
that k1 + k2 + · · · + kn ≤ n. Let (Γ1,Γ2, . . . ,Γn)
be an ({n}, {kı}, {dı}) n-Direct code such that Γı is an
(n, kı, dı) MRD code generated by the generator matrix Gı,
ı = 1, 2, . . . , n:

G1 =


α

[1]
1 α

[1]
2 · · · α

[1]
n

α
[2]
1 α

[2]
2 · · · α

[2]
n

...
...

. . .
...

α
[k1]
1 α

[k1]
2 · · · α

[k1]
n


where α1, α2, . . ., αn is a trace-orthogonal basis inGF (2n).
In a similar way, the kı×nmatrixGi with the first row being
{ α[k1+···+ki−1+1]

1 , α[k1+···+ki−1+1]
2 , . . ., α[k1+···+ki−1+1]

n }
is given by

Gı =
[
α

[k1+···+ki−1+r]
s

]kı,n
r,s=1

i = 2, 3, . . . , n

It is known that a trace-orthogonal basis of GF (2r)
over GF (2) exists for any positive integer r [8].
Since {α1, α2, . . . , αn} is a normal basis in GF (2n),
{α[ı]

1 , α
[ı]
2 , . . . , α

[ı]
n } is also some normal basis inGF (2n) for

each i = 1, 2, . . . , n. Let Λ = Γ1 ⊕ Γ2 ⊕ · · · ⊕ Γn.

Consider taking the Kronecker product of Gn with each of
the generator matrices of the constituent codes as follows:

G′1 = Gn ⊗G1

G′2 = Gn ⊗G2

...
G′n = Gn ⊗Gn.

For each ı = 1, 2, . . . , n, using the knkı×n2 matrixG′ı, gen-
erate an (n2, knkı) GF (2n)-ary code Γ′ı (say). The parity-
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check matrix for the (n2, knkı) code having generator ma-
trix G′ı can be given as:

H ′ı =

 Gi
Hi

Gn

⊗Hi

Clearly, G′ıH
′T

i = (0). It remains to find the minimum dis-
tance of the newly defined codes Γ′1,Γ

′
2, . . . ,Γ

′
n.

Note that the resultant codes Γ′1,Γ
′
2, . . . ,Γ

′
n are not MRD

codes and consequently the minimum distance of these codes
can be found in the following sense. Rank distance be-
tween two codewords is at most the Hamming distance be-
tween them: if d′ denotes the Hamming distance, then for
all c1, c2 ∈ Γ, the rank distance satisfies the inequality
d(c1, c2) ≤ d′(c1, c2) [13]. Let γ ∈ Γ′ı be a non-zero code-
word, ı = 1, 2, . . . , n. By the very construction of Γ′ı, an
arbitrary codeword c ∈ Γ′i can be written as the Kronecker
product of c1 ∈ Γn and c2 ∈ Γı. Consequently, the weight
w(γ) of a non-zero codeword γ ∈ Γ′i can be calculated as
follows:

w(γ) = w(α1, α2, . . . , αn)⊗ (β1, β2, . . . , βn)

= w(α1, α2, . . . , αn)w(β1, β2, . . . , βn)

= w(α)w(β)

≥ dndı

for some non-zero codewords α ∈ Γn and β ∈ Γi. It follows
that, the minimum distance of the ith constituent code Γ′i is
dndı. Thus we have the following proposition.

Proposition 5.1 IfGı is the generator matrix of an (n, ki, di)
MRD code as defined above, then G′ı = Gn ⊗Gı defines an
(n2, knkı, dndı) code, for each ı = 1, 2, . . . , n.

Having obtained a set of n (n2, knkı, dndı) GF (2n)-
ary codes from n-Direct code ({n}, {kı}, {dı})
(Γ1,Γ2, . . . ,Γn), our next step is to check to see if
they constitute an ({n2}, {knkı}, {dndı}) n-Direct code
(Γ′1,Γ

′
2, . . . ,Γ

′
n). The following theorem affirms it posi-

tively.

Theorem 5.2 The GF (2n)-ary codes Γ′1, Γ′2, . . . ,Γ
′
n gen-

erated by the respective generated matrices G′1, G′2, . . . , G
′
n

constitute an ({n2}, {knkı}, {dndı}) n-Direct code.

Proof: For any ı and j:

G′ıG
′
j
T

= (Gn ⊗Gı)(Gn ⊗Gj)T

= (Gn ⊗Gı)(GT
n ⊗GT

j )

= (GnG
T
n )⊗ (GıG

T
j )

=

{
I , i = j

(0) , i 6= j
(by Theorem 2.5)

where I is the knkı × knkj identity matrix and (0) is the
knkı × knkj zero-matrix.

Thus the GF (2n)-ary codes Γ′1,Γ
′
2, . . . ,Γ

′
n obtained thus

in fact constitute an ({n2}, {knkı}, {dndı}) n-Direct code
(Γ′1,Γ

′
2, . . . ,Γ

′
n). Observe that, the distance construction in-

creases the minimum distance of the constituent codes of the

resultant T -Direct code. Because of the increase in the min-
imum distance, we call the construction outlined as the dis-
tance construction and the matrix used is called the distance
matrix.

Additionally, the orthogonal projector for the n-Direct code
(Γ′1,Γ

′
2, . . . ,Γ

′
n) is given by ΠΓ′

i
= (GT

nGn) ⊗ (GT
i Gi),

which is a mapping from Λ′ = Γ′1 ⊕ Γ′2 ⊕ · · · ⊕ Γ′n onto Γ′i
for each i = 1, 2, . . . , n.

Observe that, in the distance construction outlined above,
Kronecker product of generator matrices of the constituent
codes are considered. And yet another Kronecker product
construction of codes can also be found in [27], wherein the
Kronecker product of parity-check matrices of conventional
codes were considered. Though the usages of Kronecker
product look similar, the construction procedures adopted are
totally different.

Example 5.3 Consider the ({3}, {1, 2}, {3, 2}) 2-Direct
code (Γ1,Γ2) along with the generator matrices of the con-
stituent codes:

G1 =
[
α3 α6 α5

]
G2 =

[
α6 α5 α3

α5 α3 α6

]
Then the generator matrices G′1, G

′
2 can be obtained by tak-

ing Kronecker product of G2 with each of G1 and G2.

G′1

= G2 ⊗G1

=

[
α2 α5 α4 α α4 α3 α6 α2 α
α α4 α3 α6 α2 α α2 α5 α4

]

G′2

= G2 ⊗G2

=

 α5 α4 α2 α4 α3 α α2 α α6

α4 α2 α5 α3 α α4 α α6 α2

α4 α3 α α2 α α6 α5 α4 α2

α3 α α4 α α6 α2 α4 α2 α5


Clearly, G′1 and G′2 define (9, 2, 6) and (9, 4, 4) codes, re-
spectively. It is easy to verify that the codes Γ′1,Γ

′
2 ob-

tained indeed constitute a ({9}, {2, 4}, {6, 4}) 2-Direct code
(Γ′1, Γ′2).

Thus, the proposed distance construction allows constituent
codes of a T -Direct code to have higher minimum distance,
but at the cost of increased code length for each constituent
code. The next section attempts to extend a T -Direct code to
include more constituent codes, thereby increasing the num-
ber of users that can be supported by a conventional T -Direct
code.

VI.
[
n(n+1)

2

]
-Direct codes in GF (2n)

The number of users that can be assigned a (constituent) code
in case of a T -Direct code, defined over GF (2n), is at most
n; i.e., T ≤ n. In what follows, a coding procedure based on
distance construction that constructs a T -Direct code which
can assign constituent codes to more than n users is pre-
sented.
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Consider an ({n}, {1}, {n}) n-Direct code (Γ1,Γ2, . . . ,Γn)
along with the generator matrices of the constituent codes:

G1 =
[
α

[1]
1 α

[1]
2 · · · α

[1]
n

]
G2 =

[
α

[2]
1 α

[2]
2 · · · α

[2]
n

]
...

Gn =
[
α

[n]
1 α

[n]
2 · · · α

[n]
n

]
where α1, α2, . . ., αn is a trace-orthogonal basis inGF (2n).
Clearly, (Γ1,Γ2, . . . ,Γt) is a t-Direct code for each t =
2, 3, . . . , n. Using Gn as the distance matrix, employ the
distance construction on (Γ1,Γ2, . . . ,Γn−1):

A1 = Gn ⊗G1

A2 = Gn ⊗G2

...
An−1 = Gn ⊗Gn−1

Clearly, Ai defines an (n2, 1, n2) GF (2n)-ary code, say, Γ′ı
for each ı = 1, 2, . . . , n− 1. Further, the construction proce-
dure attempts to define a set of n more GF (2n)-ary codes of
same length, as follows.

Define B1 = G1 ⊗G1

B2 = G2 ⊗G2

...
Bn = Gn ⊗Gn

Clearly, Bi (i = 1, 2, . . . , n) defines an (n2, 1, n2) GF (2n)-
ary code. Let Γ′n, Γ′n+1, . . ., Γ′2n−1 denote the codes gener-
ated by B1,B2, . . . ,Bn, respectively. It remains now to show
that the codes Γ′1, Γ′2, . . ., Γ′n−1 together with Γ′n, Γ′n+1, . . .,
Γ′2n−1 constitute an ({n2}, {1}, {n2}) (2n− 1)-Direct code
(Γ′1,Γ

′
2, . . . ,Γ

′
2n−1).

Theorem 6.1 The constituent codes Γ′1, Γ′2, . . . ,Γ
′
2n−1

defined by the respective generator matrices
A1,A2, . . . ,An−1,B1,B2, . . . ,Bn constitute an ({n2},
{1}, {n2}) (2n− 1)-Direct code.

Proof: For each ı = 1, 2, . . . , n− 1:

AıAiT = (Gn ⊗Gı)(Gn ⊗Gi)T

= I

where I is the knki × knki identity matrix.

For each j = 1, 2, . . . , n:

BjBjT = (Gj ⊗Gj)(Gj ⊗Gj)T

= I

where I is the kjkj × kjkj identity matrix.

For each ı = 1, 2, . . . , n− 1 and j = 1, 2, . . . , n:

AıBTj = (Gn ⊗Gı)(Gj ⊗Gj)T

= (Gn ⊗Gı)(GT
j ⊗GT

j )

= (GnG
T
j )⊗ (GıG

T
j )

= (0)

where (0) is the knkı × kjkj zero-matrix.

An example is given below to facilitate the construction pro-
cedure described above.

Example 6.2 Consider an ({3}, {1}, {3}) 3-Direct code
(Γ1,Γ2,Γ3) along with the generator matrices of the con-
stituent codes:

G1 =
[
α3 α6 α5

]
G2 =

[
α6 α5 α3

]
G3 =

[
α5 α3 α6

]
Using G3 as the distance matrix, employ the distance con-
struction on (Γ1, Γ2):

A1 = G3 ⊗G1

=
[
α α4 α3 α6 α2 α α2 α5 α4

]
A2 = G3 ⊗G2

=
[
α4 α3 α α2 α α6 α5 α4 α2

]
Clearly, Ai defines a (9, 1, 9) GF (23)-ary code, say, Γ′ı for
each ı = 1, 2. Further, the construction procedure attempts
to define a set of 3 more GF (23)-ary constituent codes of
same length, as follows.

B1 = G1 ⊗G1

=
[
α6 α2 α α2 α5 α4 α α4 α3

]
B2 = G2 ⊗G2

=
[
α5 α4 α2 α4 α3 α α2 α α6

]
B3 = G3 ⊗G3

=
[
α3 α α4 α α6 α2 α4 α2 α5

]
Let Γ′3, Γ′4, Γ′5 denote the codes generated by B1, B2,
B3, respectively. It is straightforward to verify that the
codes Γ′1,Γ

′
2,Γ
′
3,Γ
′
4,Γ
′
5 thus obtained indeed constitute a

({9}, {1}, {9}) 5-Direct code (Γ′1,Γ
′
2,Γ
′
3,Γ
′
4,Γ
′
5). Note

that, the proposed construction increased the number of users
from 3 to 5.

We can further generalize the above result in the fol-
lowing way using the same set of generator matrices
G1, G2, . . . , Gn as defined above. For each j = 1, 2, . . . , n−
1, usingGj as the distance matrix, define j−1 generator ma-
trices as follows:

G(j)
1 = Gj+1 ⊗G1

G(j)
2 = Gj+1 ⊗G2

...
G(j)
j = Gj+1 ⊗Gj

For each j = 1, 2, . . . , n − 1 and ı = 1, 2, . . . , j, let Γ
(j)
ı

denote the (n2, 1, n2) GF (2n)-ary code defined by the gen-
erator matrix G(j)

ı = Gj+1 ⊗Gı. Further, consider the Kro-
necker product of Gı with itself for each ı = 1, 2, . . . , n:

G(n)
1 = G1 ⊗G1

G(n)
2 = G2 ⊗G2

...
G(n)
n = Gn ⊗Gn
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Denote by Γ
(n)
ı , the (n2, 1, n2) code generated by G(n)

ı =

Gı⊗Gı, ı = 1, 2 . . . , n. It is easy to verify that the
[
n(n+1)

2

]
codes Γ

(j)
1 ,Γ

(j)
2 , . . . ,Γ

(j)
j (j = 1, 2, . . . , n) thus obtained

constitute an ({n2}, {1}, {n2})
[
n(n+1)

2

]
-Direct code.

Clearly, the extended distance construction method for the
class of T -Direct codes defined over GF (2n) in fact in-
creases the number of constituent codes and thus offers the
benefit of allowing more users to the channel under consid-
eration, where n < T ≤ n(n+1)

2 .

VII. Conclusion

In this paper, a coding scheme for the noisy T -user F -Adder
Channel is described via a class of T Rank Distance codes
that constitute a T -Direct code. The coding scheme is ac-
complished by constructing a class of T -Direct codes with
constituent codes from the class of 2-cyclic MRD codes. The
constructed class of T -Direct 2-cyclic MRD codes are shown
to be effective in coding for the noisy T -user F -Adder Chan-
nel, in that they uniquely determine the transmitted code-
words from the received noisy sequence. Further, a dis-
tance construction method for the class of T -Direct codes
is proposed. When employed on a T -Direct code that is de-
fined onGF (2n), the proposed distance construction method
not only increases the minimum distance of the constituent
codes, it also enables the resultant T -Direct code to have at
most n(n+1)

2 constituent codes, thereby allowing a greater
number of users to participate in the channel.
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