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Abstract: This paper is devoted to feature and instance selection 

managed by genetic algorithms (GA) in the context of supervised 

classification. We propose a GA encoded by binary chromosomes 

having the same size as the feature space for selecting features in 

which each evaluated chromosome delivers a set of instances. The 

main aim is to optimize the processing time, which is particularly 

problematic when handling large databases.  A key feature of our 

approach is the variable fitness evaluation based on scalability 

methodologies. Experimental results indicate that the 

preliminary version of the proposed algorithm can significantly 

reduce the computation time and is therefore applicable to 

high-dimensional data sets. 

 

Keywords: instance and feature selection, scaling, genetic 

algorithms, k nearest neighbors. 

 

I. Introduction 

In a growing number of domains, increasingly large data sets 

have to be handled and the data captured encapsulate many 

features. The need is then to extract relevant information in 

order to allow a decision or exploration support, and more than 

just delivering an accurate predictive model, to produce 

interesting knowledge for the expert domain. There is a major 

drawback in building and using a model in which the user 

cannot readily comprehend the final rules that define this 

model. In order to reduce the dimensionality of the feature 

space, the selection of informative features becomes an 

essential step towards the classification task as it contributes to 

understanding the phenomena leading to the information 

contained in the databases.  

In this case, the descriptive aspect is as important as the 

predictive one, and implies paying particular attention to 

interpretability of the results. 

Dual selection, i.e. selection of relevant features [1] and a 

family of instances [2] attached to these features, contributes 

to these two complementary objectives but is difficult to solve 

as it is a combinatorial optimization problem. This field of 

research, at the intersection of pattern recognition and soft 

computing, has been probably one of the most intensively 

studied in recent decades [3-8].  

The problem of feature selection in the context of supervised 

classification is to determine, from an original set of features, 

one or more subsets to reduce the number of workspace 

dimensions in order to improve the quality of data. Unlike 

feature transform, the fewer dimensions obtained by feature 

selection facilitate the exploration of results in data analysis 

and generally lead to higher classification accuracy. 

Techniques involving linear transformations of the original 

pattern vectors to new vectors of lower dimensionality are 

interesting especially for database visualization. They 

contribute only partially however to a better understanding and 

after all do not reduce the number of features that must be 

measured. Feature selection has now been widely applied in 

many domains during the last twenty years. 

So-called irrelevant and superfluous features are discarded, 

giving subsets of the original features which retain sufficient 

information to discriminate well among classes. 

Feature selection approaches are often segmented into filter 

and wrapper methodologies [9-10]. Filter methods consist in 

evaluating the variables individually, ordering them and 

selecting a subset. These methodologies generally differ in the 

evaluation itself and in the way the feature subset is selected. 

The evaluation criterion is not necessarily or directly related to 

the classification criterion. In wrapper methodologies, the 

selection of variables is directly related to the classification 

purpose: the method searches for the combination of a subset 

of variables that optimizes the classification accuracy. 

Filter methods are fast and rather approximate while wrapper 

methods are generally more accurate but time-consuming. 

Wrapper approaches require heuristic search techniques when 

the feature space dimension is non-trivial. Some studies 

hybridize the two approaches [10-12]. 

The concept of instance selection extends that of nearest 

neighbor algorithms [13]. Given a database S with training 

samples, whose class label is known, instance selection 
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consists in choosing a small region Sz of the available data 

such that the classification accuracy of C1nn (a nearest 

classifier) over S is maximal. These condensation methods 

usually seek to select representative instances. The Condensed 

Neighbor Rule (CNN) proposed by Hart [14], Reduced 

nearest neighbor (RNN) introduced by Gates [15], and the 

Edited Nearest Neighbor (ENN) algorithm developed by 

Wilson [16] are the pioneering approaches from which many 

alternative approaches such as the Iterative Case Filtering 

algorithm (ICF) [17], Ib3[2], and the popular DROP family 

have evolved [18]. Starting from the original set, these last 

methods consist in removing patterns step by step in an 

ordered way to obtain the final set. An item is removed if 

without it its neighbors can be well classified. 

This field of research is still being investigated but is 

considered as mature. Everybody agrees on the importance of 

understanding the relationship between features and instances. 

It is also widely admitted that better models can be determined 

by removing noise, irrelevant and redundant features and 

instances, and reducing the overall dimensionality of a data 

set. We should however mention two points:  

(i) While feature and instance selection have been studied 

independently and exhibited remarkable results, research on 

dual selection is much less extensive, despite its inherent 

interest for understandability and interpretability. 

(ii) Several efficient methodologies have been developed for 

relatively small databases. Applications dealing with large 

data sets and features have emerged in different areas. 

New user-friendly approaches are particularly expected to 

give efficient results within a reasonable time when handling 

large databases.  

 

For long time, greedy algorithms [19] were the most widely 

used but other approaches such as evolutionary algorithms 

have been investigated. Genetic algorithms (GAs) [20] have 

proved their ability to solve problems where conventional 

techniques had failed. They are sometimes applied for instance 

selection, but more often for feature selection, especially for 

treating wrapper methodologies, which are the most 

time-consuming. To use GAs, a nonparametric classifier is 

generally considered (neighborhood approaches, neural 

networks, etc.), associated with a binary chromosome that 

represents a solution. The genetic algorithm will evolve a 

family of chromosomes whose fitness function is computed by 

the classifier.  

The implementation of an evolutionary algorithm for dual 

selection faces a number of challenges. The space of possible 

subsets is very large, and the risk of converging onto local, 

unsatisfactory sub-optima is relevant. 

Using GAs is not straightforward: the precise composition of 

the algorithm cannot be determined at a general level, making 

its exploitation rather difficult. Parameter tuning and control 

often have to be determined empirically, and the process can 

be very time-consuming. Choosing suitable values is still a 

challenging issue but essential to find a good tradeoff between 

exploration and exploitation.  

Clearly, computation time is the key issue when GAs are 

applied. Despite the availability of promising mechanisms to 

make GAs very efficient, expert users in many domains often 

prefer worse approaches than GAs simply because they are 

more usable. By reducing the computation time, it is possible 

to integrate more sophisticated mechanisms that contribute to 

making GAs more efficient. This is particularly true for large 

databases.  

While we are very concerned by the mechanisms to make GAs 

more efficient, the innovative feature of the present study lies 

in the optimization of the resources used by the algorithm to 

reduce the computation time when dealing with non-trivial 

databases. When analyzing time sharing in a GA framework, it 

becomes clear that most of the time is spent on evaluating the 

fitness function itself. Since the need for accuracy varies 

during the genetic life, there is substantial room for optimizing 

this aspect. We propose to greatly reduce the cost of the fitness 

function by using adaptive scaling methods to achieve the 

fitness function. This paper describes the preliminaries of our 

approach and initial results appear to be promising. 

 

The remainder of the paper is organized as follows. Section 2 

reviews GAs and scaling approaches that are the bricks of our 

proposal. Section 3 presents our hybrid approach and section 4 

details the experimental results. Concluding remarks are given 

in Section 5 

 

II. Background and related work 

 

A. Genetic Algorithms 

 

Review of the basics 

 

GAs can be seen as powerful techniques miming natural 

reproduction. To solve a classification problem, a single 

solution via a fitness function must be presented in a single 

data structure. GAs will create a population of solutions based 

on the sample data structure proposed. In fact, they work on 

the basis of a set of candidate solutions. Each candidate or 

chromosome represents a trial solution of the problem posed 

and is a member of the population. For a recent review see the 

work by Yu et al. [21].  

GAs are general-purpose search algorithms that use principles 

inspired by natural genetics to evolve solutions to problems 

[22]. The basic idea is to maintain a population of 

chromosomes (representing candidate solutions to the 

concrete problem being solved) that evolves over time through 

a process of competition and controlled variation. During 

successive iterations, called generations, chromosomes in the 

population are rated for their adaptation as solutions, and on 

the basis of these evaluations, a new population of 

chromosomes is formed using a selection mechanism and 

specific genetic operators such as crossover and mutation. An 

evaluation or fitness function must be devised for each 

problem to be solved. Given a particular chromosome, the 

fitness function returns a single numerical value, which is 

assumed to be proportional to the utility or adaptation of the 

solution represented by that chromosome.  

The idea is that individuals or chromosomes that fit the 

environment best should have a better chance to propagate 

their offspring. Solutions that have the best fitness should 

receive higher probability to search their neighbors. The 

number of papers reporting applications of GAs to real 

problems and the number of scientists and disciplines using 

them have been growing exponentially. Several tutorials about 
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GAs have been published in journals devoted to different 

research fields [23]. 

  

Critical points using GA 

 

The set-up of the structure of a GA is a very critical point, and 

a guide leading to a good architecture is highly beneficial. 

There are two primary factors in the search carried out by a 

GA: population diversity and selective pressure [24]. In order 

to have an effective search there must be a search criterion (the 

fitness function) and a selection pressure that give individuals 

with higher fitness a higher chance of being selected for 

reproduction, mutation, and survival. Elitism or selection 

pressure favors the partial or full reproduction of the best 

chromosomes. Without selection pressure, promising regions 

of the search space would not be favored over regions offering 

no promise. The search process becomes random and the 

algorithm cannot converge.  

On the other hand, population diversity is crucial to a GA’s 

ability to continue the fruitful exploration of the search space 

[24-25]. If the lack of population diversity takes place too 

early, a premature stagnation of the search is caused. Under 

these circumstances, the search is likely to be trapped in a 

region not containing the global optimum. This problem, 

called premature convergence, has long been recognized as a 

serious failure mode for GAs [26]. Too much selection 

pressure increases the exploitation and the probability of 

making the population homogeneous sooner, rather than later. 

This could diminish the ability of the reproductive operators to 

produce variation in the population and could decrease the 

likelihood of converging to a global optimum.  

 

New trends for more operational GAs  

 

An advantage of presenting an approach using GAs is that 

efficient solutions can be obtained even for complicated 

optimization problems involving large and complex search 

spaces. The specialized literature has reported numerous 

papers relating different problems that have been successfully 

solved by a GA where conventional techniques had failed [27]. 

Despite these undeniable successes, applying GAs to a 

dedicated problem is not straightforward, and objectively their 

implementation and use face various problems. The extensive 

use of parameters leaves end-users with a large choice of 

setting and running parameters to find, which is very often 

time consuming and even sometimes inefficient. The 

challenge is not in the search for new concepts but in how to 

adaptively embed existing mechanisms in the algorithm so as 

to make the method operational for non-specialist users.  

 

B. Related work 

 

Dual selection via GAs 

 

The most natural and straightforward way to combine feature 

and instance selection is to perform one process after the other. 

Clearly, this solution cannot be optimal as the different 

objectives are not independent. There has been a lot of work 

using genetic and evolutionary algorithms for feature and 

instance selection. Since the preliminary work by Shalak [28] 

and Kuncheva [29], several studies [30-32] have addressed 

this topic using genetic and evolutionary algorithms.  

The general idea is to maximize the performance of the 1-nn 

classifier and minimize both the number of features and 

instances. The solution to these two problems is designed via 

the use of a chromosome of length f + p, which is the vector of 

all features (f) and all instances (p), and then running a GA to 

solve these problems.  

In [33], we investigated a method based on a hybrid genetic 

algorithm combined with a local optimization procedure. 

Some concepts were introduced to promote both diversity and 

elitism in the genetic population. The instance selection aims 

to remove noisy and superfluous instances and selects among 

the others only the most critical ones.  

The GA is based on self-controlled phases with dedicated 

objectives combining crowding and elitist strategies. Elitism 

and pressure preservation are reinforced by a mechanism 

involving a breaking process and an evolutionary memory. 

The genetic exploration is driven by an aggregative fitness 

assignment strategy. The GA is hybridized via forward and 

backward local procedures. The hybridization is structured in 

such a way that the classifier tractability and efficiency are 

optimized. Some neighborhood concepts related to the 

instance nature are also incorporated in the local procedures. 

By progressively filtering useless and noisy instances they 

contribute to facilitating and improving the natural selection of 

GA. While this encoding is interesting and has proved to give 

satisfactory results, beyond a certain chromosome size it is no 

longer manageable and processing responses are too slow. 

This slowness is particularly due to the time needed to evaluate 

the fitness function but also to explore all the possible 

combinations: all k elements among f+p (C
k

pf 

).  

Following on from our preliminary research in this area, we 

were therefore interested in scaling algorithms [34-35] to 

speed up the processing time for instance selection. 

Scalability methodologies 

 

Scalability methodologies are related to data partitioning. 

They aim at reducing the computation cost without 

significantly degrading the classifier performances. They 

involve breaking the data set into regions, learning from one or 

more of the regions, and possibly combining the results by 

cumulating the selected instances. The idea is to find instances 

in small regions instead of all over the training set, which can 

greatly improve the runtime. Existing methods differ in how 

they divide the data up and recombine the elementary results. 

A recent review can be found in [36]. 

In [37], the authors proposed a new fast instance selection 

method for large data sets, based on clustering. It selects 

border instances and some interior instances. They suggest 

dividing the training set into regions in which instances are 

selected. The concept of this approach appears promising. 

However, the authors did not handle the clustering problem 

itself (cluster number, convergence…). An alternative 

approach consists in applying the divide-and-conquer 

principle [38] for scaling up instance selection algorithms. 

This approach substantially reduces the number of instances, 

but does not address the tractability issue.  

In [39], the work was motivated by the following observations: 

patterns concerned by the decision borders between categories 

are generally relatively small compared to the whole 

population. Condensation algorithms are very costly 

(complexity of 0(n
2
)), which disqualifies them for non-trivial 
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size problems. Conversely, only calculations involving local 

patterns around the final instances are critically needed. 

Therefore, there is considerable room for reducing the level of 

computations generated by the classical approach. While this 

proposal follows the classical stratification schematic, a novel 

feature is that instances are determined by applying 

condensation algorithms only on useful and small pattern sets.  

This field of research is relatively recent. Even if different 

conceptual approaches are available, the following 

expectations are common to all: (i) better control of the 

balance between the run time and classification performances, 

(ii) reducing the input parameters of the algorithms. 

 

III. Our method 

Our GA consists in studying the evolution of a family of binary 

chromosomes having the same size as the feature space. Each 

chromosome presents a solution that is evaluated on its ability 

to discriminate the classes present. The evaluation function is 

examined through the neighborhood by a C1nn classifier. This 

classifier is an instance selection (IS) algorithm that is 

optimized by integrating scaling methodologies. This means 

that the output of the fitness function is a set of features and a 

set of instances.  

Using scaling methodologies greatly reduces the exploratory 

search, which is limited to the feature space. However, it 

requires more time as an instance selection algorithm has to be 

performed at each step instead of taking a random selection of 

patterns. The aim is to reduce the processing time as much as 

possible by using scaling methodologies. To achieve this, we 

propose to adapt the level of scaling approaches to the genetic 

advances. For this, we investigate new hybrid algorithms for 

instance selection in the context of supervised classification 

adapted to databases including several thousand patterns. 

 

A. Main elements of the GA 

 

The approach proposed here is not restricted to a particular 

type of GA, as it addresses the problem of reducing processing 

time that is common to all approaches. For better 

interpretability of the results, we propose a relatively simple 

GA and mention different mechanisms that can be added to 

improve the overall results. 

We can however identify different processing steps in the GA 

(Fig. 1) where the accuracy of the fitness function is not of 

equal importance.  

At least two levels can be distinguished, which can be divided 

into several sublevels.  

In the first one, which is rather exploratory (exploration 

phase), we will give the GA every opportunity to identify areas 

of the feature space that are promising for classification. In this 

exploratory phase, the genetic advance is based on a RTS 

(Restricted Tournament Scheme) scheme [40] and the 

population can progress via a large number of chromosomes. 

Each chromosome is roughly evaluated since the purpose is 

only to detect weak signals. The worst features, i.e. those 

which are selected with a low frequency, are then discarded 

from the candidate set. This filter contributes to making the 

GA selection easier and particularly faster.  

The second level is a convergence phase and an elitist 

approach is preferred here to select an accurate solution; the 

elitist model guarantees that the chromosome with the highest 

fitness value is always replicated in the next generation of 

chromosomes. Hence, the function of maximal fitness is a 

monotonous increasing function. 

 

 

 
 

Figure 1: Flowchart of the hybrid GA 

The idea is to apply for each candidate chromosome encoded 

for feature selection a condensation algorithm IS that performs 

the twofold selection within a reasonable space dimension. To 

speed up the process, IS is applied to subsets of the training set 

whose dimension is related to the genetic advances. 

Concerning the genetic aspect, different mechanisms are 

investigated to favor the search and obtain promising regions 

for convergence. 

 

Chromosome encoding and validity 

 

Instead of considering a chromosome representing the whole 

solution f+p, we adopt a chromosome of size f that is 
strategically better. A chromosome is classically represented 

by a binary string with a zero or one denoting whether the 

corresponding feature is to be selected or not. 

There is no point in handling a chromosome in which the 

majority of features is active. Each time a new chromosome is 

generated, its validity is checked by counting its number of 

ones. If this number exceeds a given threshold maxf, some of 

them are randomly removed to reach this threshold. 
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Initial population 

 

When there is no prior domain knowledge available, it is time 

consuming or difficult to determine which of the available 

features are likely to distinguish the present categories. In this 

case, the only solution is to create the initial population 

randomly. If prior domain knowledge is available, the idea is 

to mix the afforded features with random ones.  

For both cases, the initial population was randomly generated 

with chromosomes having less than maxf active features.  

 

Fitness function 

 

The performance to be achieved is multi-objective, and 

consists in finding the smallest subset of the original feature set 

such that the classification accuracy of C1nn (a nearest 

classifier) over the original pattern set Z is maximal.  

Then, the fitness function F for a chromosome Y simply takes 

into account both the classifier accuracy and the size of the 

feature subset.  

 

F = λ*S + (1- λ)* |Y|/n      (1) 

 

where  |Y| denotes the number of active features in y, S the 

classifier score, n the number of all features, and λ controls the 

relative importance of the criteria (λ = ¾ in our work).  

 

F is based on an aggregative scheme as this is the simplest 

type. The alternative of a Pareto scheme [41] is worth 

mentioning, however, for future versions. In a Pareto selection 

scheme, one chromosome dominates another if and only if its 

fitness is higher than the other’s according to at least one 

criterion and as good as the other’s according to the rest of the 

criteria. The non-dominated chromosomes of the population 

are called the Pareto front representing an indistinguishable set 

of solutions. In an aggregative scheme, the score of each 

criterion is weighted according to its relative importance. We 

suggest an aggregative scheme at least for the exploratory 

search as it is simpler and quicker than a Pareto scheme. A 

Pareto scheme can be implemented for the convergence phase. 

The idea is to pick solutions randomly from the Pareto front of 

features to determine which solution produces the minimal 

instances. It is more complex to manage. This has not been 

implemented yet in our current version to focus on the role of 

scaling methodologies and avoid some confusion.  

 

Population Evolution 

 

Our GA adopts a restricted tournament selection RTS during 

the exploratory phase and a classical proportionate selection 

of the convergence phase. The global mechanism is however 

similar: A set of (n/2) parents is randomly selected from the 

current population at generation t (Pt). In our process, one 

chromosome can be parent several times. 

Each selected chromosome A et B is submitted to the 

crossover (A=>A’, B=>B’) and mutation (A’=>A’’, B’=>B’’) 

operators with their respective probabilities. A” and B” are 

then candidates for the new population. By this process, the n 

chromosomes from generation t produce n1 (n1<n) children 

(Pct).  

A copy of the parent and children population is kept. Parents 

(Pt) and children (Pct) are then considered to form the new 

population (Pt+1). 

 

Concerning genetic operators, single-point crossover and 

mutation are used. Fitness selection is implemented by 

assigning a probability value to each individual, based on its 

fitness value, and by making individuals with higher 

probability values more likely to be selected to produce 

offspring. The operators are described as follows: 

 

Crossover operator: this operator is based on the crossover 

probability (Pc). One point is selected randomly to produce the 

combination of two parent chromosomes that give two 

children by swapping their components. 

 

Mutation operator: this operator is based on the mutation 

probability (Pm). Each bit is flipped to produce a new 

chromosome whose validity is checked. We adopt a uniform 

mutation, meaning that each chromosome undergoes the 

mutation process with the same probability of mutation. 

 

Selection operator: during the exploration phase, a RTS 

scheme is applied; this is then switched to a classic 

proportional selection for the convergence phase, which is 

more elitist. RTS belongs to the family of crowding 

methodologies in which the basic idea is to encourage the 

insertion of new chromosomes in the population by replacing 

the most similar ones. RTS initially selects two chromosomes 

A and B to produce A’’ and B” as presented before. For each 

A” and B”, the members of the current population are scanned, 

and the closest among the group to A” and B” is saved for 

further processing (say A1nn and B1nn). A” competes against 

A1nn and B” competes against B1nn and the winners are inserted 

in the new population. 

In our selective scheme, a set of chromosomes is randomly 

chosen (probability Pkeep) from the current population 

representing a level of population tournament from one 

generation to another one. This subset is placed in the next 

population without undergoing any other genetic operations. 

The other chromosomes (probability 1 - Pkeep) compete with 

chromosomes of (Pct). The best are kept and the worse 

discarded. The size of the tournament controls the amount of 

selection pressure and hence the convergence speed. A new 

population (Pt+1) of size n is then obtained.  

 

Optional additional mechanisms or adaptation 

 

We propose two mechanisms experimented in selection 

problems [33], i.e.: an archive population, and a breaking 

mechanism in order to auto-balance diversity and elitism. The 

archive population is used as a repository of solutions; it 

provides an extra source of results and favors more elitism.  

Each time a sign of premature convergence is detected in the 

current population, the breaking mechanism, which is 

integrated with the main objective of preventing premature 

convergence, encourages diversification by re-seeding 

selected chromosomes.  

In addition to these mechanisms, a local search procedure can 

be incorporated but only during the convergence phase. The 

incorporation of local search heuristics serves as an extra 

operator and it works together with crossover and mutation as 



Ros et al. 338 

part of the GA’s loop in order to accelerate convergence 

towards a better solution space. 

 

B. Optimization of the fitness function 

 

Most of GA time is generally spent on chromosome 

evaluation. Although intelligent mechanisms are necessary to 

guide the GA advances, reducing the evaluation time while 

maintaining an acceptable classification accuracy is essential, 

especially for managing non-trivial databases. We propose to 

link the resources of the scaling algorithm with the genetic 

advances. This means that a very light (approximate) version 

of the scaling algorithm is used during the preliminary stages 

of the GA, which are specifically devoted to the exploratory 

part. A more complete (accurate) version is used in the elitist 

part.   

 

Integration of scaling approaches 

 

Scaling approaches have proved to be effective. However, the 

integration of scaling methods in a GA requires special 

precautions as chromosome evaluation is needed at every 

moment without the possibility of parameter tuning or user 

intervention. This imposes a given flexibility for the setting of 

initial parameters and for the integration of scaling 

methodologies, which are inherently likely to affect the 

classification performances. We propose two alternatives: a 

very rough but fast approach and another much more accurate, 

but slower, approach. The scaling methods to be integrated 

into the GA are based on some pioneering methods [31] and 

also on some of our own research. It should be specified that 

the problem of minority classes [42] has been taken into 

account. 

 

Approximate approach 

 

The approximate approach we propose is based on a simple 

partitioning of the population into primary strata that are 

randomly generated. Instances extracted from each stratum are 

simply aggregated to form the final set (Fig.2). Two 

parameters guide the approximate approach: the first is the 

size of each stratum and the second the number of strata used.  

 

 
 

Figure 2: Instances of k strata are used for the final set 

 

The best configuration depends on the boundary complexity. 

For well-separated data and simple boundaries, a limited 

number of small strata are sufficient. For overlapping data and 

complex boundaries, instances are likely to be not consistent 

with small strata. Obviously, extracting instances using large 

strata is more costly but naturally leads to greater accuracy as 

the data degradation is less.  

Limiting the number of strata reduces the instance set size but 

is likely to affect accuracy. The first parameter is difficult to 

estimate as it depends on the boundary complexity. We can 

nevertheless identify elementary statistics to determine a 

stratum size corresponding to a minimum of 

representativeness.  

The probability P[X=k] of reaching a pattern from a region R 

representing a probability pr within k random extraction is  

P[X=k] = pr * (1 – pr)
k
.  

 

Based on this element, it is then possible to fix ns (the stratum 

size per class).  For the second parameter, the data complexity 

can be assessed iteratively.  

Let Q be the set of instances generated by n1 strata already 

accumulated. If the set of instances Ic generated by a new 

candidate stratum does not afford any additional information, 

this means that Q is sufficient to characterize the data 

complexity. The set Q is used to classify a random subset of 

training patterns extracted from each class using the 1nn rule. If 

classification accuracy is high or does not progress between 

two iterations the algorithm is stopped. Note that the process is 

optimized: the nearest distances calculated for each training 

pattern are stored. Then adding a new stratum only requires the 

calculation of distances between the training patterns with the 

new instances. The objective is to obtain a weak signal on the 

power of discrimination.  

The only parameter required to run the GA is the maximum 

number of strata Maxs.  

 

Accurate approach 

 

This so-called accurate approach is based on the notion of 

metastrata, a metastratum being simply a set of elementary 

strata. The process for obtaining a metastratum is similar to the 

one presented for the approximate approach. Instead of using 

an instance selection algorithm, a more approximate but faster 

approach is proposed to extract instances in each elementary 

stratum since the role of the generated instances is different.  

To avoid confusion, we will call these “interesting patterns”. 

Once a first reference metastratum Mr and its “interesting 

patterns” Ip are available, the database can be divided into 

metastrata. 

 

 

 
 

Figure 3: Instances are extracted from k clusters generated 

from metastratum 1 

 

A clustering approach is applied to Ip and each cluster Ci will 

represent a “target pattern” for recruiting influential patterns. k 

sets of influential patterns are recruited, one for each cluster. 

The influential patterns are recruited by classifying the 

patterns contained in Mr by the set of Ci using the 1nn rule (Fig. 

3). Finally, each Ci characterizes a region, meaning that 

instance selection algorithms can be applied on small sets of 

patterns. A “crisp” 1nn approach may be not sufficient. Some 

patterns close to the decision boundaries can be assigned to a 
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region just near the decision boundaries. It will then be ignored 

by the IS, which can affect the classification accuracy. 

For this reason, the recruitment of influential patterns from the 

active cluster Ca is done by completing its members by taking 

its two nearest neighbors Cn1 and Cn2 (Fig. 4). Cn1 and Cn2 are 

selected on the basis of the distance between two clusters 

denoted as dc (Ci,Cj): 

 

),(),( jijic GGdCCd    (2) 

 

where d(zm, zn) is the Euclidean distance between zm and zn, anf 

Gi is the center of gravity of cluster i. 

 
 

 
 

Figure 4: Recruitment of the influential patterns 

 

Finally, a set of preliminary influential patterns I(Ca) for the 

cluster Ca is built by gathering the patterns attached to Ca and 

to some members of Cn1 and Cn2. The proportion of patterns 

from Cn1 and Cn2 is however limited to β% (β from 0 to1%). 

They are selected on the basis of their distances with Ca. 

 

)(')(')()( 21 nnaa CICICICI   (3) 

 

where I(x) denotes the influential patterns attached to x, and 

I’(x) the selected ones. 

 

Two cases can occur: the sets can be either too small or too 

large. For the former, the related patterns are associated with 

another “target pattern”. For the latter, the population is cut up 

in order to obtain an acceptable size (Sz) for the instance 

method. The cutting is done through a fast clustering method. 

Working from one metastratum makes it possible to achieve a 

certain level of accuracy. The procedure can be more accurate 

if duplicated with the other metastrata on the basis of the same 

Ip. In the GA, we will play on this setting in order to achieve 

greater or less accuracy depending on the genetic advances. 

The level of results can be controlled during the procedure 

which can be stopped in the event of satisfactory results. As for 

the exploratory search, the maximum number of metastrata 

Maxms serves to drive the GA. 

 

 

Combination with the GA 

 

The range of fitness scores is divided into levels. Each level is 

associated to a specific scaling approach. Different 

alternatives are then possible to assess the advances of the GA: 

the fitness score of the best chromosome evaluation, the 

average over the whole population, etc. However, once the 

algorithm has passed through a given level, it can only remain 

at that level or move up a level. The average may indeed vary 

negatively, for example if diversification mechanisms are 

implemented. Let there be 4 levels of average: α1, α2, α3, α4. 

The first two are used for the approximate approach and the 

others for the accurate one. In each interval, we define a value 

for Maxs or Maxms depending on the approach. 

IV. Experimental results 

 

The objective of this section is to demonstrate that our 

approach is interesting for managing the dual selection 

problem with non-trivial databases. DROP4 [19] was selected 

as the C1nn with the most standard parameters.  

 

A. Data sets used 

The proposed selection method was tested on four data sets 

with known complexity. Their sizes are not trivial but 

nevertheless allow the application of non-scaling approaches.  

The first one, an academic example, is the artificial Bullseye 

problem [43]. The Bullseye problem consists of a set of 6000 

dimensional samples generated by 50 features and divided into 

two categories. With only two features, denoted 0 and 1, the 

Bullseye categories can be classified with a minimal error, as 

the population distribution associated to the remaining 

features is modified by exchanging samples randomly between 

the categories. The second data set is similar: it is composed of 

3 well-separated eyes of 2000 patterns giving more complex 

boundaries. The others are real and classes are not well 

separated. The third data set is based on data derived from the 

image field (satimage) [44], and the last one from a 

chemometric database [45] composed of compounds coming 

from various medicinal and drug data reports, published 

during the last twenty years. We used a subset of this database 

that is relevant for 4 anti-cancerous properties.  

 

The data set characteristics are reported in Table I. We split 

the data sets into training (80%) and test (20%) sets by 

applying a random partitioning. 

 

 
Table 1. Data set characteristics. 
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B. The GA implemented 

 

The feature selection problem is essentially multimodal and a 

standard GA may have some difficulty in obtaining adequate 

results without being trapped in a partial good solution. For the 

preliminary experiment, we selected the most basic GA 

scheme so as to focus on scalability and avoid possible 

interactions with additional mechanisms. In a second series of 

experiments we introduce the breaking process mentioned 

above.  

 

The chromosomes are submitted to genetic operations with the 

most standard probability levels that remain the same during 

the genetic life: 

Probability of crossover  Pc=0.5 

Probability of mutation  Pm=0.1 

Probability of tournament  Pkeep==0.5 

 

The initial population is randomly generated with 

chromosomes having less than maxf = 20 active features.  

Preliminary experiments 

 

In order to show the interest of the approach we compare the 

results with non-scaling approaches running with 30 

chromosomes. In our algorithm (GAS), 30 chromosomes were 

used during the two phases. The following parameters were 

adopted: the α parameters were respectively 0.1, 0.5, 0.7 and 

0.9 with the corresponding values for the maximum of strata 

(1, 10) and metastrata (1, 2, 3). The size of elementary strata ns 

was fixed at 100 per class and Sz at 300. 

The value β for the scaling approach was fixed at 0.5%. Table 

II summarizes the results obtained by the criteria of efficiency, 

the number of features and instances. Only the score of the best 

chromosome is given in the Table. Two results are provided: 

after the first 10 minutes of processing and after 60 minutes. 

For this preliminary test, we launched ten runs to validate the 

concept. The results are the average of the runs. 

 

 

Table 2. Results for different configurations  

(*X= no result obtained) 

 

Two results clearly stand out and highlight the contribution of 

integrating the scaling effect. First, it can be seen that for the 4 

data sets, interesting results are already obtained after only 10 

min of processing. Second, more than 100 iterations can be 

processed in less than 1 hour with the scaling approach. When 

scaling is not used, the first iteration is not finished after 10 

min of processing and less than 10 iterations are possible in 60 

min. 100 iterations requires a very long processing time 

(several hours). This makes the algorithm intractable for large 

databases. If we compare the two results of classification and 

number of selected features after 100 iterations, no clear 

differences between non-scaling and scaling approaches can 

be observed in our benchmark. There is no difference for the 

synthetic base while the results vary a little for other data sets. 

For example, within the same number of genetic generations 

(100), 73.5% of correct classification was obtained on data set 

4 with non-scaling approaches versus 71.5% with scaling 

ones. This is the cost of using scaling methodologies. It should 

be noted that scaling approaches generally generate a few 

more instances (about 10% in our benchmark) than 

non-scaling approaches. A further specific reduction is always 

possible via a dedicated GA by considering a set of promising 

chromosomes at the end of the genetic process. These 

preliminary results show the importance of the exploratory 

phase and its ability to reduce the search very quickly. This can 

be explained by the presence of far more bad solutions than 

good ones. Then, the weak signals delivered via the rough 

fitness function are sufficient to push the genetic advance. The 

convergence phase is computationally more expensive 

especially when several metastrata are used. Comparatively, 

the progression in genetic advances is better during the 

exploratory phase. 

 

A. Additional experiments with a more efficient GA 

 

In order to accelerate the evolutionary process and reach an 

efficient solution with a reasonable execution time, several 

mechanisms from the literature [33, 46] were incorporated in 

the standard GA. They are briefly presented here. Firstly, 

genetic operators, and particularly the mutation operator were 

modified so as to be fully adapted to the level of the genetic 

process and therefore limit the simultaneous tuning of several 

static parameters. Secondly, a ranking selection scheme was 

introduced in order to limit the promotion of extraordinary 

chromosomes, thus preventing premature convergence. 

Thirdly, the new GA called OGA (OGAS when scaling 

methodologies are incorporated) was reinforced by a 

mechanism involving a breaking process to reseed the 

population when necessary. This makes it possible to 

continuously manage the trade-off between elitism and 

pressure preservation.  

Table III details the results for data set 4. For each run, the 

genetic process was stopped when comparable results with the 

standard GA were obtained.  

 

 

Table 3. Results for OGA algorithm. 
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The observed difference is that the GA produces similar 

results to the standard GA within a shorter CPU time (25% to 

30% less). With this algorithm, each time a sign of premature 

convergence is detected, the population is reseeded, which 

affects the fitness average without losing the best 

chromosome. This speeds up the genetic advances and 

improves the final convergence. To go further and evaluate the 

contribution of the scaling methodologies, we let the OGA 

work until its performance was close to that of OGAS: on the 

basis of three runs, more than 100 mn were necessary to reach 

this objective (Score: 70.7%, Nf = 2 and Ni = 52). Without 

generalizing, it can then be said that incorporating scaling 

methodologies in GAs can speed up the genetic advances.  The 

improvement acts directly on the fitness function and the effect 

is complementary to the one that may be obtained by 

optimizing the genetic process itself. 

 

V. Conclusion 

 

In this study, an algorithm for feature and instance selection in 

the context of supervised classification has been investigated. 

The novelty of our approach resides in the integration of 

scaling methods in a GA devoted to feature and instance 

selection. The key features are the following: the type of 

scaling method is adapted to the genetic advances and the 

computational time of the scaling methods themselves is 

optimized.  

The results obtained with the use of a basic GA are 

encouraging and in line with the objective of improving 

tractability. While our benchmark is limited to medium-sized 

databases, the results have nonetheless revealed the 

effectiveness and applicability of the approach. Under this 

process, very large databases can be managed on the basis of 

instance selection algorithms, which is impossible with 

non-scaling approaches. Additional tests are needed on larger 

databases and significant noisy domains have to be 

investigated. 

We think that the combination of GA and scaling procedures 

can be improved by including more flexibility. The 

experiments carried out show that preliminary good results can 

be obtained very quickly through the exploration phase while 

the advance is slower during the convergence phase. The 

question is how to adapt the use of scaling methodologies. 

How can the run time be reduced without degrading the 

classification performances too much?  

We plan to deal with some of these issues in future work.  

Another future plan is to extend the algorithm to an additional 

phase (optimization phase) for handling a chromosome 

encoded for feature and instance selection simultaneously. 

This represents a major difference with previous work where 

this encoding is impossible because of the chromosome 

dimension. In this case, both the feature and instance spaces 

are highly reduced as only subsets of features and instances 

from the original database are considered. The subset of 

promising features is known by the essence of the feature 

selection algorithm. The subset of promising instances can be 

established by integrating a dynamic archive memory during 

the feature process selection. This memory stores and sorts the 

instances that have been selected by the application of the 

scaling methodologies during the feature selection process. 

We can therefore imagine obtaining a chromosome vector of 

less than one thousand dimensions even for huge databases.  

For this dimension, a dual selection algorithm can be applied 

and may lead to more efficient results. 
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