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Abstract: In this paper, we have presented a formalism for 

representation of and reasoning about directions in a qualitative 

way in two spatial reference frames, namely, an egocentric 

reference frame and an allocentric reference frame. Qualitative 

direction has been separated from dimensionality of spatial 

objects and as such, the formalism may be used to represent 

qualitative direction in a dimension-independent way. The 

formalism uses fewer numbers of base relations than existing 

formalisms and granularity can be refined easily. Algorithms for 

finding composition and converse of base relations have been 

presented. An example is presented to show how formal 

grammar can be used in conjunction with JEPD sets of 

qualitative relations for recognition of motion events involving 

any number of entities.  
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I. Introduction 

In qualitative spatial reasoning (QSR), spatial objects 

having directions have been abstracted in different ways. In 

QSR literature, we find that directed line segments, oriented 

points etc. have been used as abstractions for such physical 

objects. A recent survey on Qualitative Spatial Reasoning can 

be found in [1]. In these formalisms, point and lines are the 

basic abstractions for spatial objects. In certain applications, it 

becomes necessary to reason about directions of objects in a 

qualitative way, without focusing on the dimensionality of 

these objects. In this paper, we have discussed qualitative 

directions of physical objects without any regard to their shape 

and size.    

 

Two important formalisms that can be used for 

representation of directed objects in a qualitative way are 

dipole relation algebra [2] and oriented point algebra [3], [4]. 

In the first one, spatial entities are abstracted as directed line 

segments and relations are defined in terms of position of the 

end points of the dipoles (whether on left or on right). Since 

spatial location of end points is part of the definition, it will not 

be suitable for higher dimensional objects.  

Oriented point algebra is an excellent formalism for 

representation of qualitative direction of objects abstracted as 

points. In this formalism, orientation of a point defines a 

direction called front and other directions like frontleft, 

frontright etc. are defined accordingly. Here, we find that 

qualitative directions are expressed in terms of spatial 

orientation labels like FrontLeft, FrontRight etc. For a two 

or higher dimensional object, the model of direction labels can 

be quite different.  For example, a possible spatial orientation 

model for two dimensional objects abstracted as rectangles has 

been studied in [5] and we find that many more direction labels 

become relevant.  

In this paper, we have proposed qualitative direction 

algebras in two different spatial frames of reference.   

Qualitative direction is separated from the issues of spatial 

location and dimensionality. We have proposed a direction 

model that does not use spatial location labels for representing 

qualitative direction. The direction relation labels, that we 

have proposed, are closer to our cognitive perception of object 

locomotion. Binary JEPD relations have been presented for 

expressing qualitative direction and algorithms for finding 

their composition and converse have been outlined. The issue 

of spatio-temporal continuity of these base relations has also 

been addressed.   

 Rest of the paper is organized as follows : in section II, a 

brief introduction about spatial reference frames is presented, 

section III and IV discuss qualitative relations with respect to 

egocentric reference frame, section V discusses qualitative 

direction relations in allocentric reference frame, in section 

VI, the theoretical basis for an application of qualitative 

direction algebra is presented, section VII explains an example 

and finally the paper is concluded in section VIII with an 

indication of future work in this regard. 

II. Spatial Reference Frame 

From a cognitive point of view, Tversky [6] advocates 

that people's spatial mental models use only two basic 

perspectives - locating elements relative to one another 

from a point of view or locating an element to a higher 
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order environmental feature or reference frame. The first 

of these corresponds to an egocentric frame of reference 

and the second corresponds to an allocentric frame of 

reference or survey perspective. Spatial reference frame is 

an important issue when we want to represent qualitative 

direction [7]. In literature, mention has been made of 

allocentric and egocentric [8], [9], extrinsic, intrinsic and 

deictic frames of reference [10]. In an allocentric frame of 

reference, direction of an object is specified with respect to 

a fixed external frame of reference or coordinate system. 

For example, this may be north-south directions or may be 

X-Y coordinate system in a two dimensional plane. In the 

egocentric case, there is no such external frame. We 

represent direction with respect to an intrinsic axis of 

orientation imposed by physical configuration of the 

object. In the intrinsic case, the coordinate system is 

determined by some inherent characteristic of the 

reference object like its topology, size or shape. Deictic 

frame is imposed by an external observer. The external 

reference frame is synonymous with the allocentric case. In 

this paper, we have treated qualitative direction in an 

egocentric (intrinsic) spatial reference frame. In such a 

reference frame, we assume that a spatial object can be 

directed along an axis and this direction defines a 

coordinate system.  

 

III. Qualitative Direction Algebra: Egocentric 

Reference Frame 

A. Qualitative Direction Relations 

Definition: A Direction Line is a directed line segment in a 

two dimensional plane having a direction dir and magnitude 

m.  

 

Definition: Direction Region: -   Let l1 and l2 be two direction 

lines having directions dir1 and dir2 respectively and having a 

point of intersection o. Let ϴ be the angle between dir1 and dir2 

in an anticlockwise direction. Then, a direction region defines 

a set of direction lines that originate at o and the direction of 

any such line is bounded by the angle ϴ from dir1 in an 

anticlockwise direction.  

 

 

 

 

 

 

 

 

 

Figure 1. Object Directions using Direction Lines 

 

In Figure 1, we have shown two objects whose egocentric 

heading is indicated by arrowheads (part A). In part (B), two 

direction lines are drawn parallel to the direction of the two 

objects. 

 

Qualitative spatial reasoning (QSR) introduces as many 

abstractions as are needed for a particular application. In this 

respect, it is different from fuzzy computation. Categories in 

fuzzy approach are approximations of real values, while 

categories in QSR depend on application requirement [1]. We 

start with four qualitative direction relations, namely, Same, 

Opposite, LR and RL. Intuitive meaning of A Same B is that 

the objects are directed in the same direction. In LeftToRight 

relation (abbreviated as LR), one object is directed in a 

left-to-right orientation with respect to the other and in 

RightToLeft (abbreviated as RL), the situation is just the 

opposite. These major qualitative direction relations are 

illustrated in Figure 2. We want to emphasize the fact that LR 

and RL are in no way related with spatial orientation of the 

objects. If an object moves along its egocentric direction, its 

course of motion divides the two dimensional plane into two 

parts, one to the left and the other to the right. Now, if the 

second object moves in LR direction, its course of motion is 

from the left to the right with respect to the first and intersects 

the first at 90 degree. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. The Major Direction Relations 

 

In Qualitative Spatial Reasoning, it is common to introduce 

abstractions and to discretize the domain under consideration. 

In order to refine each of the above relations, a span of 45 

degrees counterclockwise is denoted by a + and the same in 

clockwise direction is denoted by a -. So, if the direction of the 

primary object makes an angle less than or equal to 45 degrees 

anticlockwise with the direction of the reference object, the 

resulting relation is Same+ and in the counterclockwise case, 

it is Same-. Similar convention can be followed to arrive at 

relations like Opposite+, Opposite- , LR+, LR- , RL+ and 

RL-. Thus, we have obtained twelve base relations. At this 

level of granularity, changes in direction are noticed after a 

threshold of 45 degrees. 

 In Table 1, these base relations are enumerated along with 

direction regions in terms of angles of the bounding direction 

lines and in Figure 3, the relations are illustrated. Direction 

regions are expressed in terms of positive angles measured in 

counterclockwise direction for all relations.    

B. Granularity  

The wheel shown in Figure 3 divides 360 degrees into eight 

regions, each having a span of 45 degrees. The number of 

divisions can be used to express the granularity of the algebra. 

We denote it as QDA8 to express the fact that it is Qualitative 

Direction Algebra (QDA) with granularity equal to 8.  

For certain applications, we may have to observe smaller 

changes in direction and as such, further refinement of 

qualitative direction relations may be necessary. We will 
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explain below the refinement of base relations one level 

further and show how we can arrive at QDA16.  Similar 

process can be repeated further for additional refinements. For 

granularity refinement, we equally divide the + and - direction 

regions. For example, if we divide the + region for which the 

angle range is] 0, 45], we obtain two direction regions of span 

22.5 degrees each. The region] 0, 22.5] is denoted by the 

symbol +
1
 and the region] 22.5, 45] is denoted by +

2
. As a 

result, we get twenty base relations that are listed in Table 2. 

This time, change in direction is noticed after a threshold of 

22.5 degrees. These refined relations are shown in Figure 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Direction Relations 

 

 

Sl 

No 

Base 

Relation 

Angle 

Range 

Converse 

1 Same [0,0] Same 

2 Same+ ]0,45] Same- 

3 Same- ]315,360[ Same+ 

4 Opposite [180,180] Opposite 

5 Opposite+ ]180,225] Opposite- 

6 Opposite- ]135,180[ Opposite+ 

7 lr [270,270] rl 

8 lr+ ]270,315] rl- 

9 lr- ]225,270[ rl+ 

10 rl [90,90] lr 

11 rl+ ]90,135] lr- 

12 rl- ]45,90[ lr+ 

Table 1. Base Relations for Qualitative Direction 

 

In order to apply constraint based reasoning to a set of 

spatial relations, we develop a partition scheme for the objects 

in the domain under consideration [11] and arrive at a set of 

Jointly Exhaustive Pairwise Disjoint (JEPD) base relations. 

General relations are obtained by taking the power set of base 

relations, with top, bottom, union, intersection and 

complement of relations defined in the set theoretic way [11]. 

Moreover, an identity relation and a converse operation on 

base relations must be provided. 

For the set of base relations introduced earlier, Same is the 

identity relation. Each relation is closed under converse 

operation. The converses for the base relations were listed in 

Table 1 and in Table 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Direction Relations: One Level Refined 

 

 

Sl 

No 

Base 

Relation 

Angle Range Converse 

1 Same [0,0] Same 

2 Same+
1
 ]0,22.5] Same-

1
 

3 Same+
2
 ]22.5,45] Same-

2
 

4 Same-
1
 ]337.5,360[ Same+

1
 

5 Same-
2
 ]315,337.5] Same+

2
 

6 Opposite [180,180] Opposite 

7 Opposite+
1
 ]180,202.5] Opposite-

1
 

8 Opposite+
2
 ]202.5,225] Opposite-

2
 

9 Opposite-
1
 ]157.5,180[ Opposite+

1
 

10 Opposite-
2
 ]135,157.5] Opposite+

2
 

11 lr [270,270] rl 

12 lr+
1
 ]270,292.5] rl-

1
 

13 lr+
2
 ]292.5,315] rl-

2
 

14 lr-
1
 ]247.5,270[ rl+

1
 

15 lr-
2
 ]225,247.5] rl+

2
 

16 rl [90,90] lr 

17 rl+
1
 ]90,112.5] lr-

1
 

18 rl+
2
 ]112.5,135] lr-

2
 

19 rl-
1
 ]67.5,90[ lr+

1
 

20 rl-
2
 ]45,67.5] lr+

2
 

Table 2. Refined Base Relations for Qualitative Direction 

 

For finding the direction relation that holds between 

directions of two spatial objects, one of these objects is 

considered as a reference. A direction line parallel to the 

direction of the reference object is drawn and this direction 

line can be designated as line 0. The direction relation wheel 

can now be drawn with respect to this line according to the 

granularity level under consideration. Then, the direction line 

corresponding to the direction of the primary object is drawn. 

The direction region in which this line falls tells us the 

direction relation of the primary with respect to the reference.  

 All angles are measured counterclockwise and direction 
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relations in terms of angle ranges have been listed before. 

 

We would like to present an algorithm for finding the 

converse of any qualitative direction relation. Let us assume 

that A dr B, where A and B are spatial objects and dr is the 

direction relation holding between their directions. Intuitively, 

for finding the converse of dr, we should know the number of 

rotations we should give to the direction line of A to get back 

to the direction line of B. This is because of the fact that the 

converse expresses the relation of B with respect to A. So, for 

finding the converse relation, the direction line of A will be 

taken as line 0. Moreover, we should know the relation that 

results after these many rotations. An algorithm is presented 

below for finding the converse of a qualitative direction 

relation. 

 

Algorithm Converse(R, m) 

R is the relation whose converse has to   

be returned and m is the granularity 

BEGIN 

1. n := Calc_Rot_Conv(R) 

2. If   (R=='Same'  ||   R=='Opposite'  ||  R=='LR' 

             || R=='RL') Then 

         Begin  

                Conv_Rel := Find_Rel(n , n) 

         End 

    Else 

        Begin 

                Max_rot  :=  n 

                Min_rot   := n-1 

                Conv_Rel  := Find_Rel( Min_rot , Max_rot) 

          End 

END 

 

In the above algorithm, the function Calc_Rot_Conv 

returns the number of rotations needed to align the direction 

line of the primary object with that of the reference. The 

bottom and top lines for the relation are retrieved into local 

variables p and q. p denotes the index of the bottom line and q 

denotes the index of the top line. Since the function returns m - 

p, we understand that the maximum required number of 

rotations is returned by the function. This returned value gets 

stored in the local variable n inside the function Converse. If 

the relation is one of Same, Opposite, LR or RL, then we 

know that the direction line of the primary will not fall in a 

direction region. It will align with one of the lines (at one of the 

angles 90, 180, 270 or 360 degrees measured 

counterclockwise) in the direction wheel. For example, let us 

consider QDA8 and let A Opposite B hold. Then, the direction 

line of the primary aligns with the line at an angle of 180 

degrees in the direction wheel. The value of <p, q> will be <4, 

4>. The value returned by Calc_Rot_Conv will be 4.  Inside 

the function Converse, a call will be made as Find_Rel (4, 4). 

The relation whose bottom and top lines are (4, 4) is Opposite. 

So, the converse of Opposite is computed as Opposite. 

For a discussion of other type of relations, let us consider 

RL+. The bottom and top lines for this relation will be 

returned as <p, q > = <2, 3>. The value returned from 

Calc_Rot_Conv will be 8 - 2 i.e. 6.  Inside the function 

Converse, Max_rot will be 6 and Min_rot will be 5. This 

time, there will be a call like Find_Rel (5, 6). The relation for 

which dirbottom is 5 and dirtop is 6 is LR-. So, the converse of 

RL+ is LR-. 

An outline of the Calc_Rot_Conv function is given below: 

 

Algorithm Calc_Rot_Conv(R,m) 

The function Get_Lines gives the bottom  

and top direction lines associated with 

the relation R 

BEGIN 

1. < p, q>  :=  Get_Lines(Rel) 

2. Return   m-p 

END 

 

We assume that the function Find_Rel retrieves the 

appropriate relation from a hash table depending on the pair of 

integers passed to it.  Every direction relation can be 

represented by a pair of integers (i, j) where i is the integer 

corresponding to dirbottom and j   is the integer corresponding to 

dirtop. For example, when the pair (0, 0) is passed, the retrieved 

relation is Same, when (0, 1) is   passed, the retrieved relation 

is Same+ and so on. An outline of the algorithm for the 

Find_Rel function is given below. The algorithm takes   care 

of the fact that sometimes (while computing composition of 

relations)   the second argument can be two more than the first 

and the local variables    c and d are used to control this. The 

algorithm will return a quadruple of relations. Let us assume 

that this quadruple is of the form <R, Q, S, T>.   In this 

quadruple, only non-null entries are meaningful. For example, 

if we call Find_Rel (2, 2), then only one relation is returned 

and this is available   in R. If the call is like Find_Rel (4, 5), 

then also a single relation is returned in R. The parameters Q, 

S and T become meaningful when max is   min + 2. 

 

Algorithm Find_Rel( min , max) 

BEGIN 

1. c:=d:=-1 ;  R:= Q := S := T := Null 

2. If   (min==max) Then  

3. Begin 

4.    R :=  From_Hash(min,min) 

5.    Return <R, Q, S, T> 

6. End  

7. Else If (max==min+1) Then 

8. Begin 

9.     R := From_Hash(min,max) 

10.   Return <R,Q,S,T> 

11.Else If (max==min+2) Then 

12. Begin 

13.   <a,b> := <min,min+1> 

14. If  (min+1==0 || min+1==2  

15.   || min+1==4 || min+1==6) Then 

16.    <c,d> := <min+1 , min+1> 

17.    <e,f> := <min+1 , max> 

18.    Q := Get_From_Hash(a,b) 

19.   If (c!=-1) Then  

20.   Begin  

21.      S := From_Hash(c,d)  

22.      T := From_Hash(e , f)  



Qualitative Directions in Egocentric and Allocentric Spatial Reference Frames                                                                     348 

 

23.    End 

24. Return <R, Q, S, T>   

END 

 

For constraint based reasoning, set theoretic composition of 

base relations is an important issue. We would present a 

simple algorithm for composition of base relations. Let A, B 

and C be three objects such that A Rel1 B and B Rel2 C hold. 

We want to find Rel1 º Rel2, where º denotes set theoretic 

composition. For this, direction relation wheel is drawn with 

respect to the direction of B. Since the relation of A to B is 

already known, we can identify the direction line or direction 

region for A. The remaining task is to fix C in the wheel. The 

relation Rel2 is given, but that expresses the relation of B with 

respect to C. So, we take the converse of Rel2 and identify the 

direction line or region for C with respect to B. Now, to find 

the composition we need to compute the number of rotations 

required to align direction of C with that of A and find the 

resulting relation. For any relation Rel, let us denote the lower 

line of its direction region as RelBottom and the corresponding 

upper line as RelTop. Then, any relation can be expressed as an 

ordered pair of the form (RelBottom, RelTop). For example, in the 

Figure 3, the relation Opposite+ can be specified as (4, 5) and 

Same as (0, 0).  

 

Algorithm Compose (Rel1, Rel2, m) 

This algorithms computes composition of  

rel1 and rel2. m is the granularity 

BEGIN 

1.  S := Converse( Rel2 , m) 

2. <p,q >:= Get_Lines(S) 

3. <r, s>:= Get_Lines(Rel1)   

4. <min,max>:=Calc_Rot_Comp(<p,q>,<r,s>) 

5. Find_Rel (min, max) 

END 

 

The above algorithm returns a quadruple and the non-null 

entries this quadruple are placed in appropriate slots of the 

composition table. 

IV. Conceptual Dependency  

Conceptual dependency of a spatial relation defines a set of 

relations that may hold after this relation whenever a change is 

recorded.  For example, if at any point of time Same is the 

qualitative direction relation that holds between directions of 

two objects, then it is not possible that this relation will change 

to Opposite whenever change in direction is noted. After the 

relation Same, the possible relations that may hold can be 

either Same+ or Same-. This gives rise to a notion of 

spatio-temporal continuity which can be exploited in many 

applications. The relations that may hold after the current 

relation are termed as its conceptual neighbor(s). Conceptual 

neighbors are generally expressed by a graph where nodes 

represent relations and edges are drawn from a node to its 

conceptual neighbors. In Figure 5, conceptual dependency of 

12 base relations for QDA8 is shown. When the direction 

relations are refined one level further in QDA16, twenty base 

relations result. The conceptual dependency of these twenty 

base relations is shown in Figure 6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Conceptual Dependency of Base Relations for 

QDA8: Egocentric 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Conceptual Dependency of Base Relations for 

QDA16: Egocentric 

V. Qualitative Direction Algebra: Allocentric 

Reference Frame  

We would like to use a similar idea for defining qualitative 

direction relations with respect to an external reference frame. 

This external frame may be north-south, east-west directions 

in geographic space or X-Y coordinate system or coordinate 

system with respect to any two arbitrary lines intersecting at 

right angles. We keep similar relation labels i.e. Same, 

Opposite, LR and RL as before. Though the intuitive idea 

remains same, definition of these relations will now differ. It is 

because of the fact that all the relations will be defined with 

respect to the external coordinate system.  
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Figure 7. Coordinate System and Direction Regions 

In Figure 7, north-south and east-west directions in geographic 

space have been shown as the reference frame. Right angles 

are divided into eight direction regions and the same 

interpretation for + and - is retained. Formally, we can define 

these relations as a set of ordered pairs. The first integer in the 

ordered pair indicates the direction of the primary and the 

second one indicates that of the reference. We present below 

the definition of four major qualitative direction labels. Each 

relation is defined as a union of Cartesian product of two sets 

of integers. At this point, these major direction relations are at 

a coarse level. The cases where the direction is inclined to an 

axis are also included in the definition. 

Same = { (0,1,11) X (0,1,11) , (8,9,10) X (8,9,10), (5,6,7) X 

(5,6,7), (2,3,4) X (2,3,4) } 

Opposite = {  (0,1,11) X (5,6,7) , (8,9,10) X (2,3,4), (5,6,7) X 

(0,1,11),  (2,3,4) X (8,9,10) } 

LR = { 8,9,10) X (0,1,11) , (5,6,7) X (8,9,10), (2,3,4) X 

(5,6,7), (0,1,11) X (2,3,4) } 

RL = { (2,3,4) X (0,1,11) , (0,1,11) X (8,9,10), (8,9,10) X 

(5,6,7), (5,6,7 ) X (2,3,4) } 

When we consider refinement of these relations in terms of + 

and -, we find a difference with the egocentric case. Now, 

direction is expressed with respect to the external coordinate 

system. So, we need a representation for the situation when 

direction is strictly along one of the axes of the external 

coordinate system. This case is indicated by using the symbol 

•. For example, the ordered pair (0, 0) finds a name Same•• 

and (0, 6) finds a name Opposite••. Let us illustrate this by 

explaining the ordered pair (0, 0). There are four ways in 

which two objects can move in the Same direction parallel to 

an axis of projection. These are given by the ordered pairs (0, 

0), (3, 3), (6, 6) and (9, 9). Actually, all these ordered pairs are 

included in the relation Same••. Similarly, the ordered pairs 

that indicate that the objects are directed along axes of 

projection in opposite direction are (0, 6), (3, 9), (6, 0) and (9, 

3). These ordered pairs are included in the relation 

Opposite••.  In this scheme for naming relations, we give two 

symbols after the major relation name from the set {•, +, -}. 

Sl 

No. 

Direction 

Relation 

Set Theoretic Definition 

1 Same•• {(0,0),(3,3),(6,6),(9,9)} 

2 Same+• {(1,0),(4,3),(7,6),(10,9)} 

3 Same-• {(11,0),(2,3),(5,6),(8,9)} 

4 Same•+ {(0,1),(3,4),(6,7),(9,10)} 

5 Same•- {(0,11),(3,2),(6,5),(9,8)} 

6 Same++ {(1,1),(10,10),(7,7),(4,4)} 

7 Same-- {(11,11),(2,2),(5,5),(8,8)} 

8 Same+- {(1,11),(4,2),(7,5),(10,8)} 

9 Same-+ {(11,1),(2,4),(5,7),(8,10)} 

10 Opposite•• {(0,6),(3,9),(6,0),(9,3)} 

11 Opposite+• {(1,6),(4,9),(7,0),(10,3)} 

12 Opposite-• {(11,6),(2,9),(5,0),(8,3)} 

13 Opposite•+ {(0,7),(3,10),(6,1),(9,4)} 

14 Opposite•- {(0,5),(3,8),(6,11),(9,2)} 

15 Opposite++ {(1,7),(4,10),(7,1),(10,4)} 

16 Opposite-- {(11,5),(2,8),(5,11),(8,2)} 

17 Opposite+- {(1,5),(4,8),(7,11),(10,2)} 

18 Opposite-+ {(11,7),(2,10),(5,1),(8,4)} 

19 lr•• {(0,9),(3,0),(6,3),(9,6)} 

20 lr+• {(1,9),(4,0),(7,3),(10,6)} 

21 lr-• {(11,9),(2,0),(5,3),(8,6)} 

22 lr•+ {(0,10),(3,1),(6,4),(9,7)} 

23 lr•- {(0,8),(3,11),(6,2),(9,5)} 

24 lr++ {(1,10),(4,1),(7,4),(10,7)} 

25 lr-- {(11,8),(2,11),(5,2),(8,5)} 

26 lr+- {(1,8),(4,11),(7,2),(10,5)} 

27 lr-+ {(11,10),(2,1),(5,4),(8,7)} 

28 rl•• {(0,3),(3,6),(6,9),(9,0)} 

29 rl+• {(1,3),(4,6),(7,9),(10,0)} 

30 rl-• {(11,3),(2,6),(5,9),(8,0)} 

31 rl•+ {(0,4),(3,7),(6,10),(9,1)} 

32 rl•- {(0,2),(3,5),(6,8),(9,11)} 

33 rl++ {(1,4),(4,7),(7,10),(10,1)} 

34 rl-- {(11,2),(2,5),(5,8),(8,11)} 

35 rl+- {(1,2),(4,5),(7,8),(10,11)} 

36 rl-+ {(11,4),(2,7),(5,10),(8,1)} 

Table 3. Direction Relations: Allocentric Frame of Reference 
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Then, the name of each relation will have three place holders. 

The first of these three place holders indicates the major 

direction relation; the second one indicates the direction 

information of the primary and the third indicates that of the 

reference. As an example, let us consider the Opposite 

relation. When we write Opposite••, we mean that objects are 

directed in opposite direction and direction of each object is 

strictly along an axis. The relation Opposite+• means that they 

are directed in opposite direction and direction of the primary 

is in the + direction region while the reference is directed 

strictly along an axis. Therefore, each of the four major 

relations introduced earlier will result in six different relations 

and we will have 36 base relations in total. These relations are 

listed in Table 3 along with their set theoretic definition in 

terms of direction regions and direction lines.  

 Granularity can be refined by equally dividing the + and - 

regions as shown in Figure 8. Following the same convention 

as we have done for the egocentric reference frame, the 

relation Same•+
1
 will mean that the objects are directed in the 

same direction, the primary is directed strictly along an axis 

and reference direction lies in the +
1
 region with respect to the 

axis. Formally, it can be defined as {(0, 1), (5, 6), (10, 11), (15, 

16)}.  

 

  

 

 

 

 

 

 

  

 

 

 

 

 

Figure 8. Refined Coordinate System and Direction Regions 

The set of base relations is closed under composition and 

converse. The relation Same•• is the identity relation. An 

important point to note is that since directions are expressed 

with respect to an external coordinate system, certain 

combinations will be ruled out while constructing the 

composition table.  For example, let us assume that A, B and C 

are three objects such that A Rel1 B and B Rel2 C. Now, if 

Rel1 is Same•+, then the reference object is in the + region 

while the primary is directed strictly along an axis. In Rel2, the 

reference B is having a direction relation with C. Since B is 

already declared to be in + region, it is not possible that in 

Rel2, it can be treated in any different manner. So, it is not 

possible to assign some relations to Rel2. 

We would like to elaborate on details of finding converse and 

composition of the set of base relations introduced in Table 3.  

Converse of the major unrefined direction relations (i.e. Same, 

Opposite, LR and RL) is computed from their semantics and 

are listed in Table 4 (named as CONV). 

Sl 

No 

Base Relation Converse of Base 

Relation 

1 Same Same 

2 Opposite Opposite 

3 lr rl 

4 rl lr 

Table 4. Converses of Major Direction Relations(CONV) 

A trivial algorithm, given below, can be used to find the 

converse of any relation. 

Algorithm Converse_Allocentric (Rab) 

In the relation 'Rab', R is one of  

the major relations and a and b can  

be one symbol in the set {+,-, •, +
1
, +

2
,-

1
,-

2
} 

Here, CONV is a table name  

BEGIN 

1. S := CONV[R] 

2. Return Sab 

END 

For composition, at first we use semantics of the major 

relations to find their composition.  Table 5 (named as CTM) 

lists the composition of major direction relations in the 

allocentric reference frame. 

 Same Opposite lr rl 

Same Same Opposite lr rl 

Opposite Opposite Same rl lr 

lr lr rl Opposite Same 

rl rl lr Same Opposite 

Table 5. Composition of Major Direction Relations (CTM) 

The following algorithm can be used for finding the set 

theoretic composition of any relations. 

Algorithm Compose_Allocentric (Rab, Scd) 

In the relations 'Rab' and 'Scd', R and S are the major relations  

and a, b, c, d can be any symbol in the set {+,-,•, +
1
,+

2
,-

1
,-

2
}   

BEGIN 

1. If (b != c)   Then Return NULL 

2. Else 

3. Return CTM[R, S] ad 

END 
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VI. Theoretical Basis for Presenting an 

Example on Motion Event Recognition  

A. Qualitative Spatial Reasoning 

QSR is a knowledge representation technique that represents 

knowledge at a level close to human cognition. Quantitative 

information is precise and accurate, but such information may 

not always be useful from a cognitive viewpoint. For example, 

instead of giving latitude and longitude values for Kochi, it is 

easier to understand if we say "Kochi is to the north-east from 

my hometown". In QSR, different aspects of space are treated 

in a qualitative way. Aspects of space that have been treated in 

a qualitative way are topology, orientation, direction, distance, 

shape etc. [12]. Each aspect of space is represented by a   

Jointly Exhaustive Pairwise Disjoint (JEPD) set of binary 

qualitative relations. When a spatial aspect is represented by 

such a JEPD set, each value in the domain belongs to exactly 

one relation and all the values in the domain are obtained by 

taking a union of the relations. These qualitative abstractions, 

expressed in the form of binary qualitative relations, make 

knowledge representation very close to the way human beings 

perceive things [15]. QSR is different from fuzzy systems that 

are widely used to solve different types of problems [13], [14]. 

Unlike fuzzy systems, in QSR, we introduce as many 

abstractions as are needed for a particular application. 

In QSR, qualitative relations in a JEPD set embody a notion of 

spatio-temporal continuity. This notion was first formalized as 

conceptual neighborhood in [16]. Two relations are 

conceptual neighbors if one can be transformed into the other 

by continuous change. For example, let us consider qualitative 

distance. A JEPD set for representing qualitative distance may 

be {veryclose, close, near, far, veryfar}. Conceptual 

neighbors of close are veryclose and near. This is because 

when the objects are close, then possible changes occur when 

they move closer or move apart. In order to be veryfar from 

near, the distance between the objects will change to near, 

then to far and finally to veryfar. 

B. Modeling a Motion event 

A motion event has certain features. These features may be 

spatial orientation of the objects, direction, velocity, distance 

etc. Each such feature of a   motion event is represented by a 

set of binary qualitative relations. For example, let us consider 

a motion event of two cars moving on a street.  The features we 

may select for such an event may be direction in which cars are 

moving, distance between them, spatial orientation of one car 

with respect to the other, the size of the two cars etc. We may 

describe such an event as "a big car crossing a small car from 

opposite at a very close distance".  Then, we need to have a 

qualitative abstraction for each of the features of this motion 

event. For doing this, we have used the concept of a temporal 

state.  A motion event between two objects (one is reference 

and the other is primary) during an observational interval is 

modeled as a temporal state. Such a state has been termed as a 

primitive event. In such a state, each of the qualitative motion 

features has a value and these values are invariant during the 

state.  For our example, we have two qualitative features, 

namely, direction and orientation. Spatial objects in our 

example are abstracted as directed points.  For representation 

of spatial orientation of such point objects, we have used a 

projection based model illustrated in Figure 9. The set of 

qualitative direction relation QDA8 is denoted by D in our 

subsequent discussions and the set of spatial orientation 

relations, as illustrated in Figure 9, is denoted as S. This JEPD 

set S = {Front, Back, Left, Right, FrontRight, FrontLeft, 

BackRight, BackLeft}.  

 

 

 

 

 

 

 

 

 

 

  

 

 

Figure 9. Spatial Orientation Model 

 

Definition: Primitive Event: Let D and S be two sets of JEPD 

qualitative binary spatial relations, where D is the set of 

qualitative direction relations QDA8 and S is the set of spatial 

orientation relations. Then, a primitive event between a 

primary and a reference is denoted by an ordered pair of the 

form < d, s > such that < d, s > ϵ  D X S. A primitive event 

holds for a finite interval of time. 

The use of QSR in modeling a temporal state has an 

implication. Allowable state transitions can be formally 

defined. In ordered pair representation of primitive event, each 

element of the pair is a value of some binary qualitative spatial 

relation. Therefore, the spatio-temporal continuity of these 

relations naturally extends to primitive events as well. We can 

think of primitive events that are conceptual neighbors of a 

particular event. 

Definition: Neighboring Primitive Event: Let T1 be an 

interval during which primitive event e holds and let T2 be an 

interval during which primitive event v holds (with T1 meets 

T2). Here, meets is an Allen's Interval Algebra relation. Let e 

be of the form <d1, s1 > and let v be of the form < d2, s2>. Then, 

v is a neighboring event of e iff d2 is a conceptual neighbor of 

d1 and s2 is a conceptual neighbor of s1.   

Allen [17] showed that thirteen JEPD binary qualitative 

relations can be defined between two intervals of time. These 

relations are known as Allen's interval algebra relations and in 

Figure 10, these relations are illustrated. A motion event can 

be as short as a primitive event or it may last for a longer 

duration. If it is composed of multiple primitive events, then 

this sequence of primitive events must exhibit spatio-temporal 

continuity. 

Definition: Composite Event- A composite event C1, 

expressed as  e1 • e2 •. . . • en, where each ei is a  primitive event,  
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is a  sequence of primitive events such that for any two 

primitive events ei  and ei+1 in the sequence , i < n , ei+1 is a 

neighboring event of ei. Here, • is the concatenation operator. 

 

 

 

 

 

 

 

 

 

Figure 10. Allen’s Interval Algebra Relations 

C. Recognition of a Composite Event 

A composite event is constructed by appending primitive 

events using the concatenation operator. Such an event can be 

recognized by a regular grammar. 

Definition: Regular Grammar- A regular grammar G = (V, 

T, P, S) where S is the start symbol of the grammar, V is the set 

of non-terminals, T is the set of terminals  and P is the set of 

productions of the form A → a  B or A → B  a, where a ϵ  T 

and B ϵ   V. 

In a regular grammar, the right hand side of any production 

contains a single terminal followed by a non-terminal or a 

single non-terminal followed by a terminal and the left hand 

side contains a single non-terminal. 

Lemma: A composite motion event  C1  is recognized by a 

regular grammar G = ( V , T , P , S ) where S is the start symbol 

, P is the set of productions of   the form  X → e Y or X → ϵ  

where X and Y are non-terminals and e is a primitive motion 

event , T is the set of terminals such that each terminal is a 

primitive event and V is the set of non-terminals. 

Proof: Let C1 be of the form e1 e2 ... ei ei+1 ... en. We can 

construct a finite state automaton for recognizing the sequence 

such that the FSA makes a transition from one state Si to Si+1 

when the primitive event ei is encountered. Let S1 be the initial 

state and Sn+1 be the final state. Then, from the equivalence of 

FSA and regular grammar, we construct the grammar such that 

the productions are of the form Si → ei Si+1 and finally Sn+1 → 

ϵ .   

D.  Implication of JEPDness 

We would like to emphasize the fact that the set of relations we 

choose for representing a qualitative aspect of a motion event 

must be Jointly Exhaustive and Pairwise Disjoint (JEPD). The 

importance of JEPDness is outlined in the following 

definitions and lemmas. 

Definition: Exhaustive Set of Primitive Events- Let α be the 

set of primitive events and each entry in α is of the form <d, s > 

where each d ϵ  D and s ϵ  S.  Then, α is exhaustive if each D is 

Jointly Exhaustive (JE) and S is Jointly Exhaustive.  

The following lemma underlines the importance of 

exhaustiveness. 

Lemma: A regular grammar G = (V, T, P, S) can recognize 

any composite motion event C1 only when the set of primitive 

events is exhaustive. 

Proof:  Let α be the set of primitive events and C1 be a 

composite event of the form e1 e2 ... ei v ei+1 ... en.  Let v be a 

primitive event such that v does not belong to α. Since v is not 

in the set of primitive events defined, there cannot be any 

production of the form X → v Y in P. Hence, when a sequence 

of primitive events, with v contained in it, is encountered, it 

cannot be parsed by the grammar. So, when α, the defined set 

of primitive events is exhaustive i.e. it includes all possible 

primitive events, then only any C1 can be parsed by the 

grammar. 

Lemma: A single primitive event holds at any point of time if 

D is Pairwise Disjoint (PD) and S is pairwise Disjoint (PD). 

Proof: Let αbe the set of defined primitive events.  Let us 

assume that some D is not pairwise disjoint.  Then, we can find 

two relations d1, d2 ϵ  D such that both can hold at the same 

point of time. This implies that two primitive events <d1, s1 > 

and < d2, s1> can hold during the same time interval. 

Therefore, in order to have a single primitive event holding at 

any point of time, the set D must be pairwise disjoint. Similar 

argument can be given by assuming that the set S is not 

Pairwise Disjoint (PD). 

Lemma: Composite motion events can be recognized if a 

single primitive event holds during any interval of time.  

Proof: Let us assume that e, E, v is a composite event such that 

e, v ϵ  α, where αis the set of defined primitive events.  E is a 

set of primitive events such that all the events in E hold during 

the same time interval and let E = {e1, e2, . . . en}.  Let G be the 

regular grammar defined to recognize this event.  G = (V, T, P, 

S) where the symbols bear their usual meaning.   In order to 

parse events in E, we include productions of the form X → e1 

A1 | e2 A2 | . . . en An.  During parsing, let the parser non- 

deterministically select some ei in E and parse the sequence 

looking for some defined composite event. If this ei is not 

contained in the list of primitive events that define the 

composite event to be recognized, then parsing fails. Since our 

parsing technique is deterministic, E must include only a 

single primitive event. 

VII. Presenting an Example  

A. Spatial Orientation Model 

Qualitative direction relations can be used to represent and 

reason about motion events of directional entities. For such 

applications,   formalisms are required for representation and 

recognition of motion events in an input stream. We will 

discuss an example where spatial objects will be abstracted as 

directed points and qualitative direction of such points will be 

represented by QDA8 in an egocentric spatial reference frame. 

Though, we can use qualitative direction as the only feature of 

a motion event, it would be more meaningful if we bring in 

spatial location of the objects. For this, we use a well-known 

projection based spatial orientation model for point like 

objects. This model is shown in Figure 9.  Direction of motion 
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of the object (shown using the arrow) sets up spatial 

orientation regions marked by qualitative labels like Front, 

FrontRight, FrontLeft, Back, BackRight, BackLeft, Left 

and Right. For convenience, we name these relations as F, 

FR, FL, B, BR, BL, L and R respectively. Then, we have a 

set of eight JEPD binary qualitative relations for modeling 

spatial orientation of a primary object with respect to a 

reference object. Since spatial objects are abstracted as points, 

the primary can be located in exactly one of these regions. 

Moreover, any location of a primary object can only be in one 

of these regions. We would use two qualitative features for 

modeling a motion event. These are spatial orientation and 

qualitative direction of motion.  So, for representation of the 

events, we use two JEPD sets of binary qualitative relations. 

Out of these one is QDA8 in an egocentric reference frame and 

the other is the set of spatial orientation relations {F, FR, FL, 

B, BR, BL, L, R} for the projection based model introduced 

above. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11. Motion Events of Directed Points 

B. Representation of Motion Events in the Example 

In Figure 11, we have shown five objects A, B, C, D and a 

reference R. Three snapshots in time are shown and in each 

snapshot, spatial orientation and direction of the objects with 

respect to the reference R are depicted. From the point of 

human cognition, we can say that the object A overtakes R 

during motion, B crosses from opposite, C moves from right to 

left in the back and D crosses from left to right in the front. In 

Figure 11a, the primitive motion event that holds between A 

and R is PA = <BR, Same>, that between B and R is PB = < FL, 

Opposite>, that between C and R is PC = < BR, rl> and the 

primitive event between D and R is PD = <FL, lr>. Over the 

extended interval of time, the composite motion events can be 

represented as CA = <BR, Same> <R, Same> < FR, Same> 

(between A and R), CB = <FL, Opposite> <L, Opposite> < 

BL, Opposite> (between B and R), CC = <BR, rl> < B, rl> < 

BL, rl> (between C and R) and CD = <FL, lr> <F, lr> <FR, lr> 

(between D and R). It is important to note that a composite 

motion event is still binary as it is expressed between a primary 

object and a reference. 

C. Recognition of Motion Events in the Example 

It has been proved that when spatio-temporal continuity of 

JEPD sets of binary qualitative relations, in the form of 

conceptual dependency, is combined with formal grammars, 

the resulting grammars are regular. We would like to show this 

fact for the example presented above. There are four 

composite events, namely, CA, CB, CC and CD in the example 

shown in Figure 11. Out of these, the event CA can be 

recognized using the grammar: 

 

S1 → <BR, Same> P1  

P1 → <R, Same> P2  

P2 → <FR, Same> P3  

P3 → ϵ  

 

The composite event CB can be recognized by the following 

regular grammar: 

 

S2 → <FL, Opposite> Q1  

Q1 → <L, Opposite> Q2  

Q2 → <BL, Opposite> Q3  

Q3 → ϵ  

 

The event CC is recognized by: 

  

S3 → <BR, rl> R1  

R1 → <B, rl> R2  

R2 → <BL, rl> R3  

R3 → ϵ  

 

Finally, the event CD between the primary entity D and the 

reference R can be recognized by the following grammar: 

 

S4 → <FL, lr> X1  

X1 → <F, lr> X2  

X2 → <FR, lr> X3  

X3 → ϵ  

 

Though such regular grammars can be used for recognition, 

for effectiveness and completeness, a full-fledged 

programming language should be designed for recognition of 

motion events of directional entities. Such an effort has been 

undertaken by the authors for the design of a qualitative 

language using the concepts of typed set theory. In this 

language, qualitative terms about motion events of directional 

objects can be encoded and this representation is very close to 

human cognition. Language features are designed in such a 

way that motion event among any number of spatial objects 

can be represented and recognized by creating hierarchies of 

abstractions. 

VIII. Conclusion  

In this paper, a qualitative direction algebra is proposed for 

representation of and reasoning about qualitative directions of 

spatial objects in a dimension independent way. Existing 

formalisms combine dimensionality into definition of relations 

and as a result of this, these become unsuitable when the 

dimension scales up. We have defined qualitative spatial 
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relations for QDA8 and QDA16.  Algorithms for finding the 

converse and composition of the base relations have been 

presented. It has been shown that in this formalism, it is very 

easy to move to a finer granularity depending on application 

requirement. This finer granularity is realized using fewer base 

relations than existing formalisms.  A limitation of this 

approach might be the fact that it ascertains the directions in a 

deterministic way. At any point of time, it is assumed that we 

know the angles between the directions certainly. There is no 

element of probability involved here. Future work includes 

completion of the design of a qualitative language for 

representation and recognition of motion events of directional 

objects. 
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