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Abstract: Multi-Mode Resource-Constrained Project 

Scheduling is an NP-hard optimization problem intensively 

studied due to its large area of applications. This paper 

concentrates on the evolutionary approaches to Multi-Mode 

Resource-Constrained Project Scheduling based on permutation 

encoded individuals. A new recombination operator is presented 

and a comparative analysis of several recombination operators is 

given based on computational experiments for several project 

instances. Numerical results emphasize a good performance of 

the proposed crossover scheme which takes into account 

information from the global best individual besides the genetic 

material from parents.  

 
Keywords: multi-mode resource-constrained project scheduling, 

evolutionary algorithm, crossover, permutation based encoding, best 

individual.  

 

I. Introduction 

Resource-Constrained Project Scheduling Problem (RCPSP) 

requires the allocation of limited resources to dependent 

activities over time, such that the makespan of the project is 

minimized. RCPSP has been intensively studied due to its 

large area of applications in industrial engineering, 

construction engineering, civil engineering, production and 

service industry. Multi-mode Resource-Constrained Project 

Scheduling Problem (MRPSP) represents a generalization of 

RCPSP, and therefore even more difficult to solve, in which 

activities can be in various modes affecting the resources 

needed. 

It has been proven that RCPSP belongs to the class of 

NP-hard optimization problems [3]. Since exact solutions 

cannot be found in polynomial time by any algorithm, there is 

a high interest in developing good approximation methods for 

solving RCPSP able to determine a near-optimal (or optimal) 

solution using reasonable resources. Evolutionary 

computation provides good approximate methods for solving 

problems belonging to this class. 

There have been several bio-inspired approaches to this 

problem among which a genetic algorithm with a new 

permutation of priority-based encoding scheme in [13], a 

permutation-based elitist genetic algorithm in [7], a genetic 

algorithm with two population and a mode optimization 

procedure in [10], an algorithm based on a priority value 

encoding scheme [12], a new hybrid genetic algorithm [Li, 

2011]. An extensive description of all bio-inspired methods 

for solving RCPSP and MRCPSP is beyond the scope of this 

paper. 

The role of the recombination operator during the 

evolutionary search of the MRCPSP solution is emphasized in 

this paper. Moreover, a new recombination scheme that uses 

genetic material from the best individual obtained by the 

search process besides genetic information from the parents is 

presented in this paper, together with a proof that the 

precedence feasibility of solutions is preserved in offspring if 

both parents and global best represent feasible solutions. 

Computational experiments are performed for several RCPSP 

and MRCPSP instances and results support a good 

performance of the proposed crossover scheme in comparison 

with well-known recombination operators in an evolutionary 

search. 

The paper is organized as follows: Section 2 describes the 

Resource-Constrained Project Scheduling Problem, the 

evolutionary approach with an emphasis on chromosome 

representation is presented in Section 3, several 

recombination operators for MRCPSP found in the literature 

are described in Section 4, the new crossover in Section 5, 

experimental results in Section 6 and conclusions and 

directions for further research in Section 7. 
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II. Multi-Mode Resource-Constrained Project 

Scheduling 

MRCPSP considers a project with a set of activities and a set 

of available resources. The multi-mode feature of the problem, 

which actually induces a generalization to the 

Resource-Constrained Project Scheduling Problem, refers to 

the fact that each considered activity can be in one of a set of 

modes and requires different resources and has different 

durations when finding itself in different modes. The goal is to 

find a schedule of the activities with minimum makespan, but 

considering both precedence and resources constraints. The 

problem is detailed and formalized in what follows. 

Let J be the number of activities (also called jobs) and 

},...,{ 1 Jaa the set of activities. The set of possible modes for 

the activity ja is denoted by ,jj Mm  where |}.|,...,1{ jj MM   

Jobs have to follow certain precedence constraints which 

means that a job can not start before all its predecessors are 

finished. Let us denote by jP the set of all predecessors of 

activity ja and by jS the set of all its successors. The 

precedence constraints are usually represented as an acyclic 

activity-on-node network. Two additional activities are also 

normally considered: an initial activity 0a , which must 

precede all other activities of the project and a final activity 

1Ja which must be preceded by all activities of the project. 

Figure 1 depicts an acyclic activity-on-node network for a 

project instance that we consider in order to better illustrate 

the Multi-Mode Resource-Constrained Scheduling Problem. 

 
Figure 1. Acyclic activity-on-node network 

 

If we denote by 
jjmd the duration of activity ja in mode jm , 

then the precedence relations can be written as: 

,
2111 jjmjj sds   ,

12 jj Sa   (1) 

where js represents the start time of activity ja . 

In addition to the set of activities, there is also a set of 

available resources. There are three types of resources: 

 renewable resources, which are characterized by a constant 

per-period-availability 

 non-renewable resources, whose availability covers the 

whole project duration 

 doubly-constrained resources, which are limited both for 

each timestep and for the whole project 

In order to be executed, each activity requires a certain 

amount of some of the resources. If we denote by R the set of 

renewable resources and by iR the availability of resource 

|}|,...,1{ Ri , by N the set of non-renewable resources and by 

lN the availability of resource |}|,...,1{ Nl , by DC the set of 

doubly-constrained resources and by kDC the availability of 

resource |}|,...,1{ DCk , then the limited availabilities of 

these types of resources could be written as: 

 

,,,

)(

j

tAja

jijijm MmRiRr 


 (2) 

where
jijmr represent the quantity of resource iR  that 

activity ja is using in mode jm and )(tA represent the set of 

activities taking place at timestep t; 

 

,},,...,1{,, j

ja

jljljm MmJjNlNn   (3) 

where
jljmn represent the quantity of resource lN  that 

activity ja is using in mode jm . As stated above, both types 

of constraints are applied to doubly-constrained resources 

DC. 

It should be noted that both dummy activities (initial and 

final) require no time and no resources. The goal is therefore 

to minimize .1Js A feasible schedule is one that complies with 

both precedence and resource constraints. In order to illustrate 

a feasible schedule, let us consider the project of 10 activities 

described in Table 1. Each activity of the project can be in one 

of two modes, except the dummy activities which only have 

one mode characterized by 0 duration and no resources 

needed. 

 

ja  jm  
jjmd  

jjmr1  
jjmr2  

jjmn1  
jjmn2  

0 1 0 0 0 0 0 

1 1 6 0 10 1 1 

 2 7 8 11 1 2 

2 1 5 8 2 3 1 

 2 4 8 0 2 2 

3 1 4 4 9 3 0 

 2 5 0 5 2 1 

4 1 1 2 0 0 2 

 2 4 5 4 1 1 

5 1 3 8 7 2 3 

 2 4 5 0 0 1 

6 1 2 0 8 2 3 

 2 4 0 8 1 1 

7 1 3 6 6 3 0 

 2 4 0 6 0 1 

8 1 2 5 0 2 2 

 2 2 6 3 1 0 

9 1 10 5 9 1 1 

 2 10 0 9 2 2 

10 1 10 0 3 1 0 

 2 11 4 4 0 2 

11 1 0 0 0 0 0 

Table 1. Project description 
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Figure 2. Project description 

 

The precedence relations depicted in Figure 1 apply to the 

activities belonging to this project. Also considering the 

dummy activities results in the following list of activities: 

}11,10,...,1,0{ . The time duration and amount of needed 

resources for each activity 
ja  in each of the possible modes 

are presented in Table 1.There are 2 renewable resources with 

the following per-period-availability: 11,8 21  RR and 2 

non-renewable resources with the following availabilities: 

15,12 21  NN . A feasible schedule for this project is 

depicted in Figure 2. 

III. Evolutionary Approach to Resource- 

Constrained Project Scheduling 

Inspired by the process of natural evolution, evolutionary 

algorithms (EAs) are search heuristics widely used to generate 

useful solutions to optimization problems. A population of 

individuals (also called chromosomes) is used to represent the 

search space of the problem. Each individual encodes a 

candidate solution to the problem and an evaluation (fitness) 

function is used to assess its quality. EAs evolve a population 

of individuals towards better solutions based on mechanisms 

of selection, recombination and mutation [4]. 

A standard EA (SEA) is used to address the Multi-Mode 

Resource-Constrained Project Scheduling problem. Some of 

the key aspects of the algorithm will be described in this 

section.  

 

A. Codification 

The first thing to consider in an evolutionary approach is 

how a solution of the problem is to be encoded in a 

chromosome. There have been several different codifications 

proposed in the literature for the Resource-Constrained 

Project Scheduling problem, among which: activity list 

representation, random key representation, priority rule 

representation, shift vector representation and schedule 

scheme representation. 

Our work focuses on the activity list representation which 

means that a solution of the problem is encoded as a list of the 

activities which represent their execution order. Moreover, if 

one activity 2a  appears after another activity 1a in the activity 

list, it means that start time of activity 2a  is higher or equal to 

start time of activity 1a : 

21 aa ss  . (4) 

The list of activities must be precedence feasible, meaning 

that each activity must have a higher index than each of its 

predecessors. 

This representation is suitable for RCPSP but can be easily 

extended for MRCPSP [1]. The extension is done by also 

considering a list of modes, where each activity will have a 

corresponding mode (see Figure 3). 

 

 
Figure 3. Chromosome codification (list of activities and 

corresponding modes) 

 

When translating an activity list into a schedule, each 

activity is assigned the smallest possible start time, thus 

obtaining an active schedule [9]. This means that no activity 

can be left shifted without violating the constraints. In order to 

illustrate the activity list representation, let us consider the 

project described in Table 2. The list of activities and 

corresponding modes presented in Figure 4 is precedence 

feasible and can be translated into the active schedule depicted 

in Figure 2. 

 
Figure 4. List of activities and corresponding modes for 

project described in Table 2 

 

B. Initial population 

Initial population is randomly generated in such a way that 

only precedence feasible individuals are obtained. Therefore, 

the first chromosome gene in the activity list is randomly 

selected from the entire activities set, and any other gene is 

randomly generated from the remaining set of activities only if 

all the predecessors of the chosen gene already exist in the 

chromosome configuration obtained at that point. A mode is 

randomly generated for each activity in the obtained list from 

all possible modes of the corresponding activity. 

This mechanism does not ensure a resource feasibility of 

the chromosome. We are referring of course to non-renewable 

resources, because the renewable resources constraints can be 

always ensured by considering only non-overlapping 

activities. 

Each non-feasible chromosome with respect to 
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non-renewable resources is subject to a repair procedure 

presented in the next subsection. 

 

C. Repair operator 

Let us denote by ERR (N) the number of requested 

non-renewable resources that exceeded the 

capacity |}|,...,1{, NlN l  , the so—called excess of resource 

request [10]. ERR (N) is defined as in equation (5). 

 








||

1

1

0

)),0(min()(

N

l

J

j

jljml nNNERR . (5) 

A chromosome which contains a list of activities and 

corresponding modes with 0)( NERR  is not feasible with 

respect to non-renewable resources. 

Repairing such a chromosome means taking each activity 

from the list and searching for a new mode that would improve 

ERR(N). If such a mode is found, then it will replace the old 

mode. This mechanism ensures a possible improvement of the 

resource excess, but it does not ensure that only feasible 

solutions will be obtained. However, from our experiments, 

more than 50% of the chromosomes become feasible solutions 

after being subject to this reparation operator. 

At the first glance, it might not be a good idea to keep 

unfeasible solutions in the population. However, these 

chromosomes will be penalized when computing their fitness, 

and therefore they will not be considered as relevant genetic 

material for the search process. Nevertheless, they will 

contribute to the increase of the population diversity. 

 

D. Fitness function 

There are two categories of potential solutions for the 

problem: 

 feasible solutions with respect to non-renewable 

resources 

 non-feasible solutions with respect to non-renewable 

solutions. 

 

As stated before, the problem of feasibility with respect to 

renewable resources does not exist. Also, we only keep in the 

population solutions that are feasible with respect to 

precedence constraints. Therefore, from this point onwards, 

the term non-feasible chromosomes will refer to non-feasible 

solutions from the non-renewable resources point of view. 

For the feasible solutions the fitness is given by the start 

time of the last dummy activity, which actually represents the 

makespan of the corresponding schedule. It is computed as the 

total duration of all activities, each activity acting in the mode 

given by the chromosome. 

If we consider the chromosome c depicted in Figure 3, the 

fitness of such a feasible chromosome is given by: 








1

0

)_(

J

j
jamjadcfeasibleFitness . (6) 

For the non-feasible chromosomes the fitness is computed 

as the maximum duration of all activities (by choosing the 

modes that ensure the maximum duration of each activity) 

plus the excess of resource request: 








1

0

_)()max()__(

J

j

j cNERRdcfeasiblenonFitness , (7) 

where ERR(N)_c represents the excess of resource request 

for chromosome c and )max( jd represents the maximum 

duration of activity j, considering all possible modes .jm  

 

E. Selection 

Roulette selection is used for choosing which individuals 

should enter the mating pool. The best individual obtained in 

one generation will always replace one randomly generated 

individual from the next generation. This mechanism ensures 

that the best individual obtained in the last generation is 

actually the best individual obtained in all generations of the 

algorithm. 

 

F. Recombination 

Several different recombination operators will be considered 

for performing comparisons with the one proposed in this 

paper. These operators will be described in detail in section 

IV. 

However, one feature that is common to all considered 

crossover operators is the fact that they do not change the 

modes of the activities when performing recombination 

between parents chromosomes. They do change the order in 

which activities appear in the activity list, but the mode of 

each activity is kept the same. 

Another common feature of all considered recombination 

operators is that they all create precedence feasible solutions 

of the problem if the parents represent feasible solutions of the 

problem. Also, each obtained offspring will be subject to the 

repairing operator if the schedule it is encoding exceeds the 

available non-renewable resources. 

 

G. Mutation 

A simple mutation scheme is applied with a certain mutation 

probability. This operator swaps two genes of a chromosome 

only if the obtained permutation still represents a precedence 

feasible solution of the problem. Mutation obtains new 

individuals that recombination could not obtain. 

Mutation is also responsible for changing the modes of the 

activities in the chromosome structure. Therefore, with the 

same probability of mutation, the mode of each activity can be 

changed to another mode from all possible modes of the 

corresponding activity. 

The chromosome obtained after mutation will be subject to 

the repairing operator if it exceeds the available 

non-renewable resources. 

IV. Crossover Operators 

In order to test the efficiency of our proposed recombination 

operator, we consider some other crossover schemes proposed 

in the literature for permutation based encoding that preserves 

precedence relations between activities, for 

Resource-Constrained Project Scheduling. Three of the most 

popular crossover operators for permutation based encoding 

are described in what follows. They are similar to the general 

crossover operators described by [11] for permutation based 



368 

 

Best-Order Crossover in an Evolutionary Approach to Multi-Mode Resource-Constrained Project Scheduling 

encoding, but they have been slightly adapted so that they take 

precedence relations into account. 

In the paper where these operators are proposed [6] the 

authors also present a proof that they all create feasible 

offspring if the parents represent feasible solutions of the 

problem. 

 

A. One-Point Crossover 

The first crossover operator is called one-point crossover. Let 

us denote by P1 and P2 the parents considered for 

recombination: 

},...,{1 11
1

P
J

P jjP  , 

},...,{2 22
1

P
J

P jjP  . 

An integer q is randomly chosen so that Jq 1 . The first 

offspring is obtained by taking from the first parent the entire 

sequence 
1 1

1{ ,..., }P P

qj j  and the rest of the genes are taken 

from the second parent so that the jobs that have already been 

taken from the first parent may not be considered again. This 

way the relative positions of the activities in the parents 

configuration is kept. 

Let us consider the following example in order to illustrate 

the one-point crossover: 

}7,5,3,4,6,2,1{1P  

}7,4,6,3,2,5,1{2 P  

For q=3 we obtain the following first offspring: 

}7,4,3,5,6,2,1{1O  

The second offspring is obtained is a similar way, by 

changing the role of the parents. 

 

B. Two-Point Crossover 

The two-point crossover represents an extension of the 

previously described recombination. Two integer numbers q1, 

q2 are randomly chosen so that Jqg  211 .  

The first offspring is obtained by taking from the first 

parent the sequence 
1 1

1 1{ ,..., }P P

qj j , taking the next q2-q1 

positions from the second parent so that the jobs that have 

already been taken from the first parent may not be considered 

again and the rest of the positions 
1 1

2{ ,..., }O O

q Jj j  again 

from the first parent, without considering the activities already 

taken at the first two steps. 

For the two parents considered before: 

}7,5,3,4,6,2,1{1P  

}7,4,6,3,2,5,1{2 P  

For q1=3 and q2=5, the first offspring would be: 

}7,4,3,5,6,2,1{1O . 

The other offspring is obtained in a similar way, by 

considering the second parent for the first and for the last 

sequence, and the first parent for the second sequence in 

offspring. 

 

C. Uniform Crossover 

For obtaining the first offspring by uniform crossover, a zero 

or a one is randomly generated for each position in the 

chromosome. If the position is 0, then the activity with the 

lowest index that has not been considered yet is copied from 

the first parent. Analogously, if the position is 1, then the 

activity with the lowest index that has not been considered yet 

is copied from the second parent. 

For the two parents considered before: 

}7,5,3,4,6,2,1{1P  

}7,4,6,3,2,5,1{2 P  

and array {0,1,1,0,1,0,0}, the first offspring is: 

}7,4,3,6,2,5,1{1O . 

The second offspring is obtained in a similar way, by 

swapping the role of the two parents. 

V. Proposed Best Order Recombination 

Scheme 

An initial variant of the best-order crossover has been 

proposed by the authors in [5]. The obtained results proved 

the efficiency of the proposed crossover for the well known 

Traveling Salesman Problem. The best-order operator has 

been adapted for Resource-Constrained Project Scheduling, 

ensuring that obtained offspring represent feasible solutions of 

the problem. The proposed operator is described in what 

follows, together with a proof that feasible parents create 

feasible offspring. 

A. Best-Order Crossover 

The proposed Best-Order Crossover (BOX) is using 

information from the best individual obtained by the search 

process, besides using genetic material from the parents.  We 

use this information in order to accelerate the search process 

by orienting it towards promising regions of the search space. 

In order to be able to differentiate between good and bad 

genetic material, we have to decide what relevant genetic 

material means when considering permutation based 

encoding. In TSP for example, it is not important that a certain 

city has been visited at a certain moment of time, but rather the 

succession of visited cities, because the edges of a tour can be 

seen as the carriers of the genetic information. In RCPSP, the 

order of the activities is also important because of the 

precedence constraints. 

The proposed BOX also exploits the fact that the order of 

the activities is important, not their positions. The main new 

feature of the proposed crossover operator is the use of genetic 

material belonging to the best individual together with genetic 

information from the two parents that are subject to 

recombination. 

Several cutting points are randomly chosen. The number of 

cutting points is randomly selected and can be even zero. 

Every two consecutive cutting points (including the beginning 

and the end of the chromosome array) will generate a 

sequence of alleles; when the number of cutting points is 0, we 

will only have one sequence containing the whole 

chromosome. One of the following values will be assigned to 

each resulting sequence: -1, -2, -3. These values identify the 

source used for creating the offspring. A sequence identified 

by -1 means that the alleles will be taken from the main parent. 

A sequence identified by -2 means that the alleles will be taken 

from the other parent and when -3 is assigned to a sequence, 

the alleles will be taken from GlobalBest. 
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For example, in order to create the first offspring, we 

consider the first parent as the main parent. When we have a -1 

sequence in offspring, we take the corresponding positions in 

the same order from the main parent. For a -2 sequence, we 

take the corresponding positions from the main parent but the 

order is given by the other parent. For a sequence identified by 

-3, we take the corresponding positions from the main parent 

but in the order imposed by GlobalBest. 

In Figure 5, the sequence 4-5 is taken from Parent 1 is the 

same order, sequence 1-2-3 from the first parent is copied in 

Offspring 1 but the order is given by GlobalBest and the 

sequence 6-7-8 is also taken from the first parent but the order 

is given by the second parent. 

 

 
Figure 5. Best Order Crossover Operator 

 

B. Feasible Solutions 

THEOREM 1. The offspring obtained by BOX represent 

feasible solutions of the problem if the parents are also 

feasible solutions. 

 

Proof: Let P1 ad P2 be two feasible parents: 
1 1

11 { ,..., }P P

JP j j , 

2 2

12 { ,..., }P P

JP j j  

and let 1{ ,..., }G G

JG j j be the global best obtained by the 

search process up to that moment, also a feasible solution. 

Let us assume that the first obtained offspring O1 is not a 

feasible solution: 
1 1

11 { ,..., }O O

JO j j , 

1 1,O O

i kj j  so that 1 i k J    and 1

1
O

k

O

i j
j S . 

 

The following cases may appear: 

i) both 
1O

ij  and 
1O

kj  belong to the same parent or both of 

them belong to the global best. This means that activity 
1O

ij  

is before activity 
1O

kj  in that chromosome, which is a 

contradiction of the parents/global best feasibility. 

ii) 
1O

ij  and 
1O

kj  belong to different parents or to one 

parent and to the global best. This means that activity 
1O

ij  is 

before activity 
1O

kj  in P1, because we take sequences of 

activities from P1 in an order given by P1, P2 or G, which is a 

contradiction of P1 feasibility. 

VI. Experimental Results 

The four recombination operators described in Sections 4 and 

5 - One-Point Crossover (1PX), Two-Point Crossover (2PX), 

Uniform Crossover (UX), Best Order Crossover (BOX) - are  

engaged in a standard evolutionary approach to MRCPSP in 

order to see how the results are affected by the application of 

different crossover schemes. The parameters used by the 

evolutionary algorithm are given in Table 2. 

 

Parameter Value 

Population size 100 

Number of generations 100 

Mutation probability 0.05 

Table 2. Evolutionary algorithm parameters 

 

For testing the performance of the proposed recombination 

scheme, several ProGen project instances have been 

considered [8]. ProGen is a Project Scheduling Problem 

Instance Generator of controlled difficulty, which is focused 

on precedence constrained and resource constrained project 

scheduling problems. Instances for both single-mode and 

multi-mode resource constrained scheduling problems are 

thus obtained. 

Some results obtained for the single-mode variant of the 

problem (RCPSP) for projects with 30 activities have been 

presented in [2]. The experiments performed in this paper will 

include both more complex single-mode scheduling problems 

(the complexity being given by the increased number of 

activities), and multi-mode scheduling problems with a large 

number of activities. 

For the single-mode variant of the problem we have 

considered 80 ProGen instances having between 30 and 120 

activities. Table 3 presents the best and the average results 

over 10 runs of the standard evolutionary algorithm with all 

four recombination operators for each of 20 randomly chosen 

instances. 

For the multi-mode variant, 400 ProGen instances with a 

number of activities varying between 10 and 30, have been 

considered. The results obtained for 20 randomly chosen 

instances are presented in Table 4. These results refer to the 

best and average results over 10 runs of the evolutionary 

algorithm with all four recombination operators for each 

considered problem instance. 

The bold values in both Tables 3 and 4 represent the best 

solutions obtained for each instance. When using BOX, the 

algorithm is able to find the known solution of the problem in 

the highest percentage, compared to the other recombination 

operators. Also, if we take a look at the mean values obtained 

after 10 runs, it can be noticed that in most of the runs the 

result obtained by the algorithm using BOX is closer to the 

known solution of the problem compared to the other ones. 

The convergence curve obtained in one run of the algorithm 

for a single-mode instance and one run for a multi-mode 

instance are depicted in Figures 6 and 7. It can be noticed that 

not only the final results are better when using BOX, but the 

solution is detected in fewer generations, which reduces the 

time and resources needed for detecting it. This behavior has 
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been observed for most of the considered instances. 

Therefore, the test results indicate the acceleration of the 

search process when using the proposed recombination 

operator. 

 

 

 

 

 

 1PX 2PX UX BOX 

 Best Avg Best Avg Best Avg Best Avg 

j301_1 48 51 50 52 51 52 43 47 

j301_8 55 56 55 56 56 59 53 56 

j601_2 80 83 77 82 85 88 74 80 

j601_4 93 95 93 96 93 98 91 96 

j601_8 84 91 86 90 91 96 82 87 

j601_9 90 96 94 97 97 98 85 96 

j602_5 58 61 57 60 57 60 55 60 

j901_1 95 99 100 103 100 103 91 97 

j901_2 109 113 104 112 110 114 101 112 

j901_4 99 104 101 105 109 110 97 105 

j901_9 88 92 88 92 90 94 86 89 

j902_2 119 125 119 123 119 122 114 120 

j902_8 90 96 92 95 89 92 86 93 

j1201_1 150 159 153 159 153 159 141 151 

j1201_3 151 161 152 159 159 165 147 154 

j1201_5 149 161 154 159 159 166 139 153 

j1201_10 155 161 149 160 159 165 139 154 

j1202_1 113 120 110 117 115 118 107 112 

j1202_5 141 148 137 143 142 146 133 140 

j1202_7 119 127 116 124 119 124 112 120 

j301_1 48 51 50 52 51 52 43 47 

Table 3. Best and average makespan obtained after 10 runs for single-mode instances 

  

 1PX 2PX UX BOX 

 Best Avg Best Avg Best Avg Best Avg 

c1510_7 20 22 20 22 21 22 18 21 

c2111_8 23 24 23 25 23 24 22 26 

j1010_5 24 25 24 25 24 25 24 24 

j1211_1 20 21 20 21 19 21 18 20 

j1211_10 22 22 22 23 22 22 22 22 

j1410_5 20 21 20 22 20 21 20 21 

j1810_9 39 42 39 42 40 42 40 42 

j2011_7 27 29 27 29 27 27 26 29 

j3010_3 36 40 36 38 36 38 33 39 

j3011_1 42 44 41 44 43 44 39 41 

j3011_5 42 43 42 44 43 43 40 43 

m411_9 22 23 22 23 22 23 20 23 

m510_9 21 22 21 22 21 22 19 22 

n310_7 28 30 28 30 28 29 26 30 

n310_10 27 30 26 29 26 29 24 29 

r110_10 11 13 12 13 11 12 9 12 

r311_3 26 29 25 27 26 28 24 28 

r510_7 30 32 30 32 29 32 26 31 

r511_9 29 30 30 31 29 31 30 31 
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r511_5 27 28 27 28 27 28 25 28 

c1510_7 20 22 20 22 21 22 18 21 

 

Table 4. Best and average makespan obtained after 10 runs for multi-mode instances 

 

Figure 6. One run of the evolutionary algorithm for instance 

j1201_1. The results for each recombination operator are 

depicted over generations. 

 

Figure 7. One run of the evolutionary algorithm for instance 

510_7. The results for each recombination operator are 

depicted over generations. 

 

The proposed operator does not require extra resources 

because an evolutionary algorithm usually keeps track of the 

best individual obtained by the search process at each time 

step. 

VII. Conclusions 

A new recombination operator for permutation based 

encoding has been proposed in this paper. This operator is 

suitable to Resource-Constrained Project Scheduling Problem 

and Multi-Mode Resource-Constrained Project Scheduling 

Problem because it preserves the precedence constraints when 

obtaining the offspring from feasible parents. The main 

feature of the proposed operator is the use of genetic 

information from the best individual besides the two parents 

considered for recombination. 

Experimental results performed on ProGen project 

instances indicate a superior performance of the proposed 

operator, thus emphasizing the role that recombination has in 

accelerating the search in an evolutionary process. An 

extensive study of all recombination operators used for 

RCPSP and MRCPSP will be performed and the experiments 

will be extended to more instances with more activities. 
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