
International Journal of Computer Information Systems and Industrial Management Applications.

ISSN 2150-7988 Volume 6 (2014) pp. 364 - 372

© MIR Labs, www.mirlabs.net/ijcisim/index.html

Dynamic Publishers, Inc., USA

Best-Order Crossover in an Evolutionary Approach

to Multi-Mode Resource-Constrained Project

Scheduling

Anca Andreica
1
 and Camelia Chira

2

1 Department of Computer Science,

Babes-Bolyai University

Kogalniceanu 1, 400084 Cluj-Napoca, Romania

anca@cs.ubbcluj.ro

2 Department of Computer Science and

Centre for the Study of Complexity

Babes-Bolyai University

Kogalniceanu 1, 400084 Cluj-Napoca, Romania

cchira@cs.ubbcluj.ro

Abstract: Multi-Mode Resource-Constrained Project

Scheduling is an NP-hard optimization problem intensively

studied due to its large area of applications. This paper

concentrates on the evolutionary approaches to Multi-Mode

Resource-Constrained Project Scheduling based on permutation

encoded individuals. A new recombination operator is presented

and a comparative analysis of several recombination operators is

given based on computational experiments for several project

instances. Numerical results emphasize a good performance of

the proposed crossover scheme which takes into account

information from the global best individual besides the genetic

material from parents.

Keywords: multi-mode resource-constrained project scheduling,

evolutionary algorithm, crossover, permutation based encoding, best

individual.

I. Introduction

Resource-Constrained Project Scheduling Problem (RCPSP)

requires the allocation of limited resources to dependent

activities over time, such that the makespan of the project is

minimized. RCPSP has been intensively studied due to its

large area of applications in industrial engineering,

construction engineering, civil engineering, production and

service industry. Multi-mode Resource-Constrained Project

Scheduling Problem (MRPSP) represents a generalization of

RCPSP, and therefore even more difficult to solve, in which

activities can be in various modes affecting the resources

needed.

It has been proven that RCPSP belongs to the class of

NP-hard optimization problems [3]. Since exact solutions

cannot be found in polynomial time by any algorithm, there is

a high interest in developing good approximation methods for

solving RCPSP able to determine a near-optimal (or optimal)

solution using reasonable resources. Evolutionary

computation provides good approximate methods for solving

problems belonging to this class.

There have been several bio-inspired approaches to this

problem among which a genetic algorithm with a new

permutation of priority-based encoding scheme in [13], a

permutation-based elitist genetic algorithm in [7], a genetic

algorithm with two population and a mode optimization

procedure in [10], an algorithm based on a priority value

encoding scheme [12], a new hybrid genetic algorithm [Li,

2011]. An extensive description of all bio-inspired methods

for solving RCPSP and MRCPSP is beyond the scope of this

paper.

The role of the recombination operator during the

evolutionary search of the MRCPSP solution is emphasized in

this paper. Moreover, a new recombination scheme that uses

genetic material from the best individual obtained by the

search process besides genetic information from the parents is

presented in this paper, together with a proof that the

precedence feasibility of solutions is preserved in offspring if

both parents and global best represent feasible solutions.

Computational experiments are performed for several RCPSP

and MRCPSP instances and results support a good

performance of the proposed crossover scheme in comparison

with well-known recombination operators in an evolutionary

search.

The paper is organized as follows: Section 2 describes the

Resource-Constrained Project Scheduling Problem, the

evolutionary approach with an emphasis on chromosome

representation is presented in Section 3, several

recombination operators for MRCPSP found in the literature

are described in Section 4, the new crossover in Section 5,

experimental results in Section 6 and conclusions and

directions for further research in Section 7.

 Andreica and Chira

365

II. Multi-Mode Resource-Constrained Project

Scheduling

MRCPSP considers a project with a set of activities and a set

of available resources. The multi-mode feature of the problem,

which actually induces a generalization to the

Resource-Constrained Project Scheduling Problem, refers to

the fact that each considered activity can be in one of a set of

modes and requires different resources and has different

durations when finding itself in different modes. The goal is to

find a schedule of the activities with minimum makespan, but

considering both precedence and resources constraints. The

problem is detailed and formalized in what follows.

Let J be the number of activities (also called jobs) and

},...,{ 1 Jaa the set of activities. The set of possible modes for

the activity ja is denoted by ,jj Mm  where |}.|,...,1{ jj MM 

Jobs have to follow certain precedence constraints which

means that a job can not start before all its predecessors are

finished. Let us denote by jP the set of all predecessors of

activity ja and by jS the set of all its successors. The

precedence constraints are usually represented as an acyclic

activity-on-node network. Two additional activities are also

normally considered: an initial activity 0a , which must

precede all other activities of the project and a final activity

1Ja which must be preceded by all activities of the project.

Figure 1 depicts an acyclic activity-on-node network for a

project instance that we consider in order to better illustrate

the Multi-Mode Resource-Constrained Scheduling Problem.

Figure 1. Acyclic activity-on-node network

If we denote by
jjmd the duration of activity ja in mode jm ,

then the precedence relations can be written as:

,
2111 jjmjj sds  ,

12 jj Sa  (1)

where js represents the start time of activity ja .

In addition to the set of activities, there is also a set of

available resources. There are three types of resources:

 renewable resources, which are characterized by a constant

per-period-availability

 non-renewable resources, whose availability covers the

whole project duration

 doubly-constrained resources, which are limited both for

each timestep and for the whole project

In order to be executed, each activity requires a certain

amount of some of the resources. If we denote by R the set of

renewable resources and by iR the availability of resource

|}|,...,1{ Ri , by N the set of non-renewable resources and by

lN the availability of resource |}|,...,1{ Nl , by DC the set of

doubly-constrained resources and by kDC the availability of

resource |}|,...,1{ DCk , then the limited availabilities of

these types of resources could be written as:

,,,

)(

j

tAja

jijijm MmRiRr 


 (2)

where
jijmr represent the quantity of resource iR that

activity ja is using in mode jm and)(tA represent the set of

activities taking place at timestep t;

,},,...,1{,, j

ja

jljljm MmJjNlNn  (3)

where
jljmn represent the quantity of resource lN that

activity ja is using in mode jm . As stated above, both types

of constraints are applied to doubly-constrained resources

DC.

It should be noted that both dummy activities (initial and

final) require no time and no resources. The goal is therefore

to minimize .1Js A feasible schedule is one that complies with

both precedence and resource constraints. In order to illustrate

a feasible schedule, let us consider the project of 10 activities

described in Table 1. Each activity of the project can be in one

of two modes, except the dummy activities which only have

one mode characterized by 0 duration and no resources

needed.

ja jm
jjmd

jjmr1
jjmr2

jjmn1
jjmn2

0 1 0 0 0 0 0

1 1 6 0 10 1 1

 2 7 8 11 1 2

2 1 5 8 2 3 1

 2 4 8 0 2 2

3 1 4 4 9 3 0

 2 5 0 5 2 1

4 1 1 2 0 0 2

 2 4 5 4 1 1

5 1 3 8 7 2 3

 2 4 5 0 0 1

6 1 2 0 8 2 3

 2 4 0 8 1 1

7 1 3 6 6 3 0

 2 4 0 6 0 1

8 1 2 5 0 2 2

 2 2 6 3 1 0

9 1 10 5 9 1 1

 2 10 0 9 2 2

10 1 10 0 3 1 0

 2 11 4 4 0 2

11 1 0 0 0 0 0

Table 1. Project description

366

Best-Order Crossover in an Evolutionary Approach to Multi-Mode Resource-Constrained Project Scheduling

Figure 2. Project description

The precedence relations depicted in Figure 1 apply to the

activities belonging to this project. Also considering the

dummy activities results in the following list of activities:

}11,10,...,1,0{ . The time duration and amount of needed

resources for each activity
ja in each of the possible modes

are presented in Table 1.There are 2 renewable resources with

the following per-period-availability: 11,8 21  RR and 2

non-renewable resources with the following availabilities:

15,12 21  NN . A feasible schedule for this project is

depicted in Figure 2.

III. Evolutionary Approach to Resource-

Constrained Project Scheduling

Inspired by the process of natural evolution, evolutionary

algorithms (EAs) are search heuristics widely used to generate

useful solutions to optimization problems. A population of

individuals (also called chromosomes) is used to represent the

search space of the problem. Each individual encodes a

candidate solution to the problem and an evaluation (fitness)

function is used to assess its quality. EAs evolve a population

of individuals towards better solutions based on mechanisms

of selection, recombination and mutation [4].

A standard EA (SEA) is used to address the Multi-Mode

Resource-Constrained Project Scheduling problem. Some of

the key aspects of the algorithm will be described in this

section.

A. Codification

The first thing to consider in an evolutionary approach is

how a solution of the problem is to be encoded in a

chromosome. There have been several different codifications

proposed in the literature for the Resource-Constrained

Project Scheduling problem, among which: activity list

representation, random key representation, priority rule

representation, shift vector representation and schedule

scheme representation.

Our work focuses on the activity list representation which

means that a solution of the problem is encoded as a list of the

activities which represent their execution order. Moreover, if

one activity 2a appears after another activity 1a in the activity

list, it means that start time of activity 2a is higher or equal to

start time of activity 1a :

21 aa ss  . (4)

The list of activities must be precedence feasible, meaning

that each activity must have a higher index than each of its

predecessors.

This representation is suitable for RCPSP but can be easily

extended for MRCPSP [1]. The extension is done by also

considering a list of modes, where each activity will have a

corresponding mode (see Figure 3).

Figure 3. Chromosome codification (list of activities and

corresponding modes)

When translating an activity list into a schedule, each

activity is assigned the smallest possible start time, thus

obtaining an active schedule [9]. This means that no activity

can be left shifted without violating the constraints. In order to

illustrate the activity list representation, let us consider the

project described in Table 2. The list of activities and

corresponding modes presented in Figure 4 is precedence

feasible and can be translated into the active schedule depicted

in Figure 2.

Figure 4. List of activities and corresponding modes for

project described in Table 2

B. Initial population

Initial population is randomly generated in such a way that

only precedence feasible individuals are obtained. Therefore,

the first chromosome gene in the activity list is randomly

selected from the entire activities set, and any other gene is

randomly generated from the remaining set of activities only if

all the predecessors of the chosen gene already exist in the

chromosome configuration obtained at that point. A mode is

randomly generated for each activity in the obtained list from

all possible modes of the corresponding activity.

This mechanism does not ensure a resource feasibility of

the chromosome. We are referring of course to non-renewable

resources, because the renewable resources constraints can be

always ensured by considering only non-overlapping

activities.

Each non-feasible chromosome with respect to

 Andreica and Chira

367

non-renewable resources is subject to a repair procedure

presented in the next subsection.

C. Repair operator

Let us denote by ERR (N) the number of requested

non-renewable resources that exceeded the

capacity |}|,...,1{, NlN l  , the so—called excess of resource

request [10]. ERR (N) is defined as in equation (5).

 








||

1

1

0

)),0(min()(

N

l

J

j

jljml nNNERR . (5)

A chromosome which contains a list of activities and

corresponding modes with 0)(NERR is not feasible with

respect to non-renewable resources.

Repairing such a chromosome means taking each activity

from the list and searching for a new mode that would improve

ERR(N). If such a mode is found, then it will replace the old

mode. This mechanism ensures a possible improvement of the

resource excess, but it does not ensure that only feasible

solutions will be obtained. However, from our experiments,

more than 50% of the chromosomes become feasible solutions

after being subject to this reparation operator.

At the first glance, it might not be a good idea to keep

unfeasible solutions in the population. However, these

chromosomes will be penalized when computing their fitness,

and therefore they will not be considered as relevant genetic

material for the search process. Nevertheless, they will

contribute to the increase of the population diversity.

D. Fitness function

There are two categories of potential solutions for the

problem:

 feasible solutions with respect to non-renewable

resources

 non-feasible solutions with respect to non-renewable

solutions.

As stated before, the problem of feasibility with respect to

renewable resources does not exist. Also, we only keep in the

population solutions that are feasible with respect to

precedence constraints. Therefore, from this point onwards,

the term non-feasible chromosomes will refer to non-feasible

solutions from the non-renewable resources point of view.

For the feasible solutions the fitness is given by the start

time of the last dummy activity, which actually represents the

makespan of the corresponding schedule. It is computed as the

total duration of all activities, each activity acting in the mode

given by the chromosome.

If we consider the chromosome c depicted in Figure 3, the

fitness of such a feasible chromosome is given by:








1

0

)_(

J

j
jamjadcfeasibleFitness . (6)

For the non-feasible chromosomes the fitness is computed

as the maximum duration of all activities (by choosing the

modes that ensure the maximum duration of each activity)

plus the excess of resource request:








1

0

_)()max()__(

J

j

j cNERRdcfeasiblenonFitness , (7)

where ERR(N)_c represents the excess of resource request

for chromosome c and)max(jd represents the maximum

duration of activity j, considering all possible modes .jm

E. Selection

Roulette selection is used for choosing which individuals

should enter the mating pool. The best individual obtained in

one generation will always replace one randomly generated

individual from the next generation. This mechanism ensures

that the best individual obtained in the last generation is

actually the best individual obtained in all generations of the

algorithm.

F. Recombination

Several different recombination operators will be considered

for performing comparisons with the one proposed in this

paper. These operators will be described in detail in section

IV.

However, one feature that is common to all considered

crossover operators is the fact that they do not change the

modes of the activities when performing recombination

between parents chromosomes. They do change the order in

which activities appear in the activity list, but the mode of

each activity is kept the same.

Another common feature of all considered recombination

operators is that they all create precedence feasible solutions

of the problem if the parents represent feasible solutions of the

problem. Also, each obtained offspring will be subject to the

repairing operator if the schedule it is encoding exceeds the

available non-renewable resources.

G. Mutation

A simple mutation scheme is applied with a certain mutation

probability. This operator swaps two genes of a chromosome

only if the obtained permutation still represents a precedence

feasible solution of the problem. Mutation obtains new

individuals that recombination could not obtain.

Mutation is also responsible for changing the modes of the

activities in the chromosome structure. Therefore, with the

same probability of mutation, the mode of each activity can be

changed to another mode from all possible modes of the

corresponding activity.

The chromosome obtained after mutation will be subject to

the repairing operator if it exceeds the available

non-renewable resources.

IV. Crossover Operators

In order to test the efficiency of our proposed recombination

operator, we consider some other crossover schemes proposed

in the literature for permutation based encoding that preserves

precedence relations between activities, for

Resource-Constrained Project Scheduling. Three of the most

popular crossover operators for permutation based encoding

are described in what follows. They are similar to the general

crossover operators described by [11] for permutation based

368

Best-Order Crossover in an Evolutionary Approach to Multi-Mode Resource-Constrained Project Scheduling

encoding, but they have been slightly adapted so that they take

precedence relations into account.

In the paper where these operators are proposed [6] the

authors also present a proof that they all create feasible

offspring if the parents represent feasible solutions of the

problem.

A. One-Point Crossover

The first crossover operator is called one-point crossover. Let

us denote by P1 and P2 the parents considered for

recombination:

},...,{1 11
1

P
J

P jjP  ,

},...,{2 22
1

P
J

P jjP  .

An integer q is randomly chosen so that Jq 1 . The first

offspring is obtained by taking from the first parent the entire

sequence
1 1

1{ ,..., }P P

qj j and the rest of the genes are taken

from the second parent so that the jobs that have already been

taken from the first parent may not be considered again. This

way the relative positions of the activities in the parents

configuration is kept.

Let us consider the following example in order to illustrate

the one-point crossover:

}7,5,3,4,6,2,1{1P

}7,4,6,3,2,5,1{2 P

For q=3 we obtain the following first offspring:

}7,4,3,5,6,2,1{1O

The second offspring is obtained is a similar way, by

changing the role of the parents.

B. Two-Point Crossover

The two-point crossover represents an extension of the

previously described recombination. Two integer numbers q1,

q2 are randomly chosen so that Jqg  211 .

The first offspring is obtained by taking from the first

parent the sequence
1 1

1 1{ ,..., }P P

qj j , taking the next q2-q1

positions from the second parent so that the jobs that have

already been taken from the first parent may not be considered

again and the rest of the positions
1 1

2{ ,..., }O O

q Jj j again

from the first parent, without considering the activities already

taken at the first two steps.

For the two parents considered before:

}7,5,3,4,6,2,1{1P

}7,4,6,3,2,5,1{2 P

For q1=3 and q2=5, the first offspring would be:

}7,4,3,5,6,2,1{1O .

The other offspring is obtained in a similar way, by

considering the second parent for the first and for the last

sequence, and the first parent for the second sequence in

offspring.

C. Uniform Crossover

For obtaining the first offspring by uniform crossover, a zero

or a one is randomly generated for each position in the

chromosome. If the position is 0, then the activity with the

lowest index that has not been considered yet is copied from

the first parent. Analogously, if the position is 1, then the

activity with the lowest index that has not been considered yet

is copied from the second parent.

For the two parents considered before:

}7,5,3,4,6,2,1{1P

}7,4,6,3,2,5,1{2 P

and array {0,1,1,0,1,0,0}, the first offspring is:

}7,4,3,6,2,5,1{1O .

The second offspring is obtained in a similar way, by

swapping the role of the two parents.

V. Proposed Best Order Recombination

Scheme

An initial variant of the best-order crossover has been

proposed by the authors in [5]. The obtained results proved

the efficiency of the proposed crossover for the well known

Traveling Salesman Problem. The best-order operator has

been adapted for Resource-Constrained Project Scheduling,

ensuring that obtained offspring represent feasible solutions of

the problem. The proposed operator is described in what

follows, together with a proof that feasible parents create

feasible offspring.

A. Best-Order Crossover

The proposed Best-Order Crossover (BOX) is using

information from the best individual obtained by the search

process, besides using genetic material from the parents. We

use this information in order to accelerate the search process

by orienting it towards promising regions of the search space.

In order to be able to differentiate between good and bad

genetic material, we have to decide what relevant genetic

material means when considering permutation based

encoding. In TSP for example, it is not important that a certain

city has been visited at a certain moment of time, but rather the

succession of visited cities, because the edges of a tour can be

seen as the carriers of the genetic information. In RCPSP, the

order of the activities is also important because of the

precedence constraints.

The proposed BOX also exploits the fact that the order of

the activities is important, not their positions. The main new

feature of the proposed crossover operator is the use of genetic

material belonging to the best individual together with genetic

information from the two parents that are subject to

recombination.

Several cutting points are randomly chosen. The number of

cutting points is randomly selected and can be even zero.

Every two consecutive cutting points (including the beginning

and the end of the chromosome array) will generate a

sequence of alleles; when the number of cutting points is 0, we

will only have one sequence containing the whole

chromosome. One of the following values will be assigned to

each resulting sequence: -1, -2, -3. These values identify the

source used for creating the offspring. A sequence identified

by -1 means that the alleles will be taken from the main parent.

A sequence identified by -2 means that the alleles will be taken

from the other parent and when -3 is assigned to a sequence,

the alleles will be taken from GlobalBest.

 Andreica and Chira

369

For example, in order to create the first offspring, we

consider the first parent as the main parent. When we have a -1

sequence in offspring, we take the corresponding positions in

the same order from the main parent. For a -2 sequence, we

take the corresponding positions from the main parent but the

order is given by the other parent. For a sequence identified by

-3, we take the corresponding positions from the main parent

but in the order imposed by GlobalBest.

In Figure 5, the sequence 4-5 is taken from Parent 1 is the

same order, sequence 1-2-3 from the first parent is copied in

Offspring 1 but the order is given by GlobalBest and the

sequence 6-7-8 is also taken from the first parent but the order

is given by the second parent.

Figure 5. Best Order Crossover Operator

B. Feasible Solutions

THEOREM 1. The offspring obtained by BOX represent

feasible solutions of the problem if the parents are also

feasible solutions.

Proof: Let P1 ad P2 be two feasible parents:
1 1

11 { ,..., }P P

JP j j ,

2 2

12 { ,..., }P P

JP j j

and let 1{ ,..., }G G

JG j j be the global best obtained by the

search process up to that moment, also a feasible solution.

Let us assume that the first obtained offspring O1 is not a

feasible solution:
1 1

11 { ,..., }O O

JO j j ,

1 1,O O

i kj j so that 1 i k J   and 1

1
O

k

O

i j
j S .

The following cases may appear:

i) both
1O

ij and
1O

kj belong to the same parent or both of

them belong to the global best. This means that activity
1O

ij

is before activity
1O

kj in that chromosome, which is a

contradiction of the parents/global best feasibility.

ii)
1O

ij and
1O

kj belong to different parents or to one

parent and to the global best. This means that activity
1O

ij is

before activity
1O

kj in P1, because we take sequences of

activities from P1 in an order given by P1, P2 or G, which is a

contradiction of P1 feasibility.

VI. Experimental Results

The four recombination operators described in Sections 4 and

5 - One-Point Crossover (1PX), Two-Point Crossover (2PX),

Uniform Crossover (UX), Best Order Crossover (BOX) - are

engaged in a standard evolutionary approach to MRCPSP in

order to see how the results are affected by the application of

different crossover schemes. The parameters used by the

evolutionary algorithm are given in Table 2.

Parameter Value

Population size 100

Number of generations 100

Mutation probability 0.05

Table 2. Evolutionary algorithm parameters

For testing the performance of the proposed recombination

scheme, several ProGen project instances have been

considered [8]. ProGen is a Project Scheduling Problem

Instance Generator of controlled difficulty, which is focused

on precedence constrained and resource constrained project

scheduling problems. Instances for both single-mode and

multi-mode resource constrained scheduling problems are

thus obtained.

Some results obtained for the single-mode variant of the

problem (RCPSP) for projects with 30 activities have been

presented in [2]. The experiments performed in this paper will

include both more complex single-mode scheduling problems

(the complexity being given by the increased number of

activities), and multi-mode scheduling problems with a large

number of activities.

For the single-mode variant of the problem we have

considered 80 ProGen instances having between 30 and 120

activities. Table 3 presents the best and the average results

over 10 runs of the standard evolutionary algorithm with all

four recombination operators for each of 20 randomly chosen

instances.

For the multi-mode variant, 400 ProGen instances with a

number of activities varying between 10 and 30, have been

considered. The results obtained for 20 randomly chosen

instances are presented in Table 4. These results refer to the

best and average results over 10 runs of the evolutionary

algorithm with all four recombination operators for each

considered problem instance.

The bold values in both Tables 3 and 4 represent the best

solutions obtained for each instance. When using BOX, the

algorithm is able to find the known solution of the problem in

the highest percentage, compared to the other recombination

operators. Also, if we take a look at the mean values obtained

after 10 runs, it can be noticed that in most of the runs the

result obtained by the algorithm using BOX is closer to the

known solution of the problem compared to the other ones.

The convergence curve obtained in one run of the algorithm

for a single-mode instance and one run for a multi-mode

instance are depicted in Figures 6 and 7. It can be noticed that

not only the final results are better when using BOX, but the

solution is detected in fewer generations, which reduces the

time and resources needed for detecting it. This behavior has

370

Best-Order Crossover in an Evolutionary Approach to Multi-Mode Resource-Constrained Project Scheduling

been observed for most of the considered instances.

Therefore, the test results indicate the acceleration of the

search process when using the proposed recombination

operator.

 1PX 2PX UX BOX

 Best Avg Best Avg Best Avg Best Avg

j301_1 48 51 50 52 51 52 43 47

j301_8 55 56 55 56 56 59 53 56

j601_2 80 83 77 82 85 88 74 80

j601_4 93 95 93 96 93 98 91 96

j601_8 84 91 86 90 91 96 82 87

j601_9 90 96 94 97 97 98 85 96

j602_5 58 61 57 60 57 60 55 60

j901_1 95 99 100 103 100 103 91 97

j901_2 109 113 104 112 110 114 101 112

j901_4 99 104 101 105 109 110 97 105

j901_9 88 92 88 92 90 94 86 89

j902_2 119 125 119 123 119 122 114 120

j902_8 90 96 92 95 89 92 86 93

j1201_1 150 159 153 159 153 159 141 151

j1201_3 151 161 152 159 159 165 147 154

j1201_5 149 161 154 159 159 166 139 153

j1201_10 155 161 149 160 159 165 139 154

j1202_1 113 120 110 117 115 118 107 112

j1202_5 141 148 137 143 142 146 133 140

j1202_7 119 127 116 124 119 124 112 120

j301_1 48 51 50 52 51 52 43 47

Table 3. Best and average makespan obtained after 10 runs for single-mode instances

 1PX 2PX UX BOX

 Best Avg Best Avg Best Avg Best Avg

c1510_7 20 22 20 22 21 22 18 21

c2111_8 23 24 23 25 23 24 22 26

j1010_5 24 25 24 25 24 25 24 24

j1211_1 20 21 20 21 19 21 18 20

j1211_10 22 22 22 23 22 22 22 22

j1410_5 20 21 20 22 20 21 20 21

j1810_9 39 42 39 42 40 42 40 42

j2011_7 27 29 27 29 27 27 26 29

j3010_3 36 40 36 38 36 38 33 39

j3011_1 42 44 41 44 43 44 39 41

j3011_5 42 43 42 44 43 43 40 43

m411_9 22 23 22 23 22 23 20 23

m510_9 21 22 21 22 21 22 19 22

n310_7 28 30 28 30 28 29 26 30

n310_10 27 30 26 29 26 29 24 29

r110_10 11 13 12 13 11 12 9 12

r311_3 26 29 25 27 26 28 24 28

r510_7 30 32 30 32 29 32 26 31

r511_9 29 30 30 31 29 31 30 31

 Andreica and Chira

371

r511_5 27 28 27 28 27 28 25 28

c1510_7 20 22 20 22 21 22 18 21

Table 4. Best and average makespan obtained after 10 runs for multi-mode instances

Figure 6. One run of the evolutionary algorithm for instance

j1201_1. The results for each recombination operator are

depicted over generations.

Figure 7. One run of the evolutionary algorithm for instance

510_7. The results for each recombination operator are

depicted over generations.

The proposed operator does not require extra resources

because an evolutionary algorithm usually keeps track of the

best individual obtained by the search process at each time

step.

VII. Conclusions

A new recombination operator for permutation based

encoding has been proposed in this paper. This operator is

suitable to Resource-Constrained Project Scheduling Problem

and Multi-Mode Resource-Constrained Project Scheduling

Problem because it preserves the precedence constraints when

obtaining the offspring from feasible parents. The main

feature of the proposed operator is the use of genetic

information from the best individual besides the two parents

considered for recombination.

Experimental results performed on ProGen project

instances indicate a superior performance of the proposed

operator, thus emphasizing the role that recombination has in

accelerating the search in an evolutionary process. An

extensive study of all recombination operators used for

RCPSP and MRCPSP will be performed and the experiments

will be extended to more instances with more activities.

Acknowledgments

This research is supported by Grant PN II TE 320,

Emergence, auto-organization and evolution: New

computational models in the study of complex systems,

funded by UEFISCDI, Romania.

References

[1] Alcaraz, J., Maroto, C., A New Genetic Algorithm for the

Multi-Mode Resource-Constrained Project Scheduling

Problem, 2002.

[2] Andreica, A., Chira, C., The Role of Crossover in

Evolutionary Approaches to Resource-Constrained

Project Scheduling, Proceedings of the International

Conference on Intelligent Systems Design and

Applications (ISDA 2012), Kochi, India, pp. 200-205,

2012.

[3] Blazewicz, J., Lenstra, J., Rinnooy Kan, A., Scheduling

subject to resource constraints: Classification and

complexity. Discrete Applied Mathematics 5, pp. 11-24,

1983.

[4] Dumitrescu, D., Lazzerini, B., Jain, L.C, Dumitrescu, A.,

Evolutionary Computation, CRC Press, Boca Raton,

FL., 2000.

[5] Gog, A., Chira, C., Recombination operators in

permutation-based evolutionary algorithms for the

travelling salesman problem, Chapter 10 in Logistics

Management and Optimization through Hybrid Artificial

Intelligence Systems, IGI Global, pp. 268-285, 2012.

[6] Hartmann, S., A Competitive Genetic Algorithm for

Resource-Constrained Project Scheduling, Naval

Research Logistics 45, pp. 733-750, 1998.

[7] Kim, J.-L., Ellis, R.D., Permutation-Based Elitist Genetic

Algorithm for Optimization of Large-Sized

Resource-Constrained Project Scheduling, J. Constr.

Eng. Manage. 134, 904, 2008.

[8] Kolisch, R., Schwindt, C., Sprecher, A., Benchmark

instances for project scheduling problems; Kluwer;

Weglarz, J. (Hrsg.): Handbook on recent advances in

project scheduling, pp. 197-212, 1999.

[9] Kolisch, R., Serial and parallel resource-constrained

project scheduling methods revisited: Theory and

372

Best-Order Crossover in an Evolutionary Approach to Multi-Mode Resource-Constrained Project Scheduling

computation. European Journal of Operational

Research, 90, 320–333, 1996.

[10] Peteghem, V., Vanhoucke, M., A genetic algorithm for

the Multi-Mode Resource-Constrained Project

Sceduling Problem, working paper, 2008.

[11] Reeves, C.R., Genetic algorithms and combinatorial

optimization. In V. J. Rayward-Smith, editor,

Applications of modern heuristic methods, pages

111–125. Alfred Waller Ltd., Henley-on-Thames, 1995.

[12] Ren, Y.H., Kong, D.C., Peng, W.L., A Genetic

Algorithm Based Solution with Schedule Mode for

RCPSP, Advanced Materials Research, vol 268-270, pp.

1802-1805, 2011.

[13] Zhang, H., A Genetic Algorithm for Solving RCPSP,

Computer Science and Computational Technology,

2008. ISCSCT '08. International Symposium on, pp. 246

– 249, 2008.

Author Biographies

Anca Andreica received the BSc degree in 2001, MSc

degree in 2002 and PhD degree in 2007, all degrees in

computer science from Babes-Bolyai University,

Cluj-Napoca, Romania. Anca is currently assistant

lecturer within the Department of Computer Science,

Babes-Bolyai University, Romania. Her main research

interests include evolutionary computing, nature-inspired

metaheuristics and complex systems. Anca has published

three books and over 50 papers.

Camelia Chira received the BSc degree in computer

science from Babes-Bolyai University, Cluj-Napoca,

Romania in 1998. From 2000 to 2005 she was engaged in

full-time research at Galway-Mayo Institute of

Technology (GMIT), Galway, Ireland focusing in the area

of agent-based systems and ontologies for distributed

collaborative design environments. She received the MSc

and PhD degrees from GMIT Ireland in 2002 and 2005,

respectively. Since 2006, Camelia is a researcher within

the Department of Computer Science and Centre for the

Study of Complexity, Babes-Bolyai University, Romania,

currently working in the study and analysis of complex

systems using cellular automata, complex networks and

supporting artificial intelligence models. Her main

research interests include computational intelligence,

swarm techniques, complex systems and networks,

machine learning, multi-agent systems and ontologies

with applications ranging from distributed cooperative

work, optimization, planning, scheduling, routing and

logistics to social network analysis, data mining and

bioinformatics. Camelia Chira has published over 100

scientific papers on these topics in various journals and

conference proceedings, 5 book chapters and 2 books.

