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Abstract— In this paper analysis of hysteresis neural network
towards stability are proposed. In the present research
existence, asymptotic stability and Input-output stability of
equations as a model for hysteretic neurons are
discussed. These neural networks can also be employed
for image extraction in a noise interfering channels. We
establish sufficient conditions for various stability analysis of
this class of neural networks. The result improves the earlier
publications due to the Input output analysis of the network
with neutral delays.
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l. INTRODUCTION

Hysteresis can be observed in many engineering systems
such as control systems, electronic circuits and also observed in
animals such as frogs [15] and crayfish [9]: In a piezoelectric
actuator; hysteresis means that for a certain input; there is no
unique output and the output depends on the input history [7].
Mathematical models describing the dynamical interactions of
hysteresis neural network have been discussed in ([2],[4-8]). In
this paper we consider the class of continuous — time
hysteresis neural network as a model described by the
following form of neutral delay differential equations

. N z,(t)+mz,(t-7)

7 =-az(t)+ ) b f; s : @
= +0,2;(t-0)+a;

t>0. Here é:g%gl,iszmmszzw”n

The initial functions associated with the system (1) are
given by z,(s) = ,(s) fors e[-y,0] for each i=1,2,..,n,
here y=max{o,z}. 7, €C'([-y,0],R) for each
i=12,...n

Let x, =z @{t)+mz{t—7)+q z.i(t—a)+ai, 2
for t>0.
Then equation (1) can be written as

2 =-az,(t)+ 3, (x, (1)), ©)
j=1
Differentiating w.r.t’t’ (2) and using system (3),

%[Xi Ol=-a 1z (t)+gbﬂ fi(z,(1)
+|i(—ai Z, (t—r)+jzn;,bij fj(zj(t_r))j

=

then system (1) can be written in the following form which
is mathematically convenient to work with

%[Xi (t)—qijzn_;b” fi(x (t_a))}
~—ax (t)+gbij £ (x (1))
+|i_§n:bij f(x(t=2))+1, I, =aq, .

(4)
Foranyse[-y,0],i=12,..,n,

x)=m(S)+lz,(s—7)+q 7wi(S—o)+o; =¢(S).

From 7, € C'([-7.0], R) we have ¢ € C'([-7,0], R).
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Therefore, X (t) =@ (s),fors e[—y,0] are the initial

conditions associated with the network (2).
The system (1) may be viewed as first order
differential equations of neutral type with varying inputs.

From network (1) we can observe that function fi,

depends not only on the output of a system, but also history
of the rate of change of its output. Input-output
representation and state variable representation are two
different behaviors of looking at the same [20]. The two
types of representations are used as each of them give a
different kind of approach into how the system works
.There exists a very close relationship between the types of
stability results .Hence one can find adopting these two
approaches. The latter approach is aimed at the
determination of output bounds given the characteristics of
the feedback system and its input. Both the input and the
output bounds are defined in some normed spaces. Thus,
the issue of input-output stability is referred to as an Lp
stability analysis. Lp stability theory has been extensively
studied in the literature ([12], [16],[17],[20],[23]). On the
other hand, the techniques of functional analysis, pioneered
by Sandberg [16-17] and Zames [23] have developed
equally rapidly and generated a large number of results
concerning the input-output properties of nonlinear
feedback systems. The Lp stability of linear feedback
systems with a single time-varying sector-bounded element
is studied in [13]. The subject of feedback systems stability
has been extensively dwelt upon in the literature [20].

In the present investigation we establish results on dealing
with the circumstances under which conditions X of (4) is

L" - stable.
Definition 1.The solution X =0 is L" - stable for (4), if it
is stable and for (t,,U,) € D,, where

Dy ={(t,x)/t=0,]x]<M},0< M <o,
Let F(t,t,,u,) be any
which F(t,t,,u,) =U, , for all t;>0 there exists a
3y =S, (t,) > O such that if |uy| < &, then

solution of (4) for

© p
[IF(t.t,u)] dt<co. .
f
1. EXISTENCE AND UNIQUENESS

It is easy to see that the equilibrium of the system (4) is a
solution of the following system of equations. For

i=12,..n
fj(x’;)+

ax = Zn:bij (1+1)
-1
®)
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Throughout this discussion, we assume that the functions
f. satisfy the following conditions:
For i=12,...,
that
[ (u(0)= 1 (v(©)]= Lu—v] ®)
for Uu,veR and t [0,0)..
Now our first result is concerned with the existence of

N, there exist positive quantities L, such

a unique equilibrium Xi* for
i=12,..,n

Theorem 1. Assume that condition (6) satisfied. In addition
assume that the decay rates a,, the synaptic weights bij,

the system (4), for

and the parameters L, satisfy the following inequality

L2|b”| (|I |+1) (7

Then under these condltlons there exist a unique equilibrium
point for the system (4).

Proof. If X=X is an equilibrium point  with
* * * * T *
X =( ) X satisfies the following
n 1+I .
Z (%) +a s
:1 i
foreachi=1,2,...n. 8)

Define a mapping

H={H ,i=12.n;j=12,..n}

ij?

Where

Hij =xi—>[

L))

©)

for each xeR".

In [14], a locally invertible C, map H:R" —>R"is a

homeomorphism of R" onto itself if it is proper that is

H™(K) is compact for any compact set K in R". So if

we verify that H is proper we can have that H is a bijective
mapping and hence H(x) = 0 has a unique solution.
Therefore (4) has another set of unique equilibrium solution

for each XeR". First we prove that if (4) have
equilibrium then it is unique. Suppose that there are two
equilibrium points x* and X".

Then we can obtain
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From (10) we have & >0 and hence H H(X)H > g”X”

=21 < ) 4 (5,

i—12 . 19 which implies we have | !(iHm HI-_l(X)H = 00. So we have
,2,...0. m
Thus we have H IiHm ||H (X)|| =00, Hence H(X) =0 has unique
X||[—00

1+ solution and (4) has a unique equilibrium point.
; HJ X %], i=12,.1 (4) que eq P
a.
J

= j=1

This implies we have

I1l.  STABILITY ANALYSIS
Global asymptotic stability of an equilibrium means that the

1+ || | recall is perfect in the sense no hints or guesses are needed. Now
1 LI Z|bu | —X| = 0. we recall that the equilibrium X" associated with input | is
11) globally asymptotically stable independent of delays, if every
If we assume solution X of (4) corresponding to an arbitrary choice of initial
1+ ‘| ‘ functions (6), satisfies liM x(t) = x". .
Z‘b“ ‘ (12) e 0
Lemma 1 [21]. Let f (t) € c[a, OO]. If J' f2(t) < oo and

‘| =0. Therefore X' = X". Hence if (4)
have equilibrium, it has unique equilibrium. To show the
existence of the equilibrium of (4) it is enough to show that

H is a homeomorphism of R" onto itself. From the
uniqueness of an equilibrium proof we have that if

X* #* )'Z* then we have H(X*) =H ()N(*)’ hence H is for each i=1,2,..,n. |_I (i|bjl||ql|j <1.
one-to-one. Therefore H is locally invertible C0 mapping. =1
To prove proper it sufficient to prove that that H is

We have

f'(t) is bounded, then f (t) —>0at—oow.

Theorem 2. Assume that the following inequalities are
satisfied

Further there existan 77 >0 such that

[HO)| = for  ||x]| — 0. &
Consider 3| 2-a[n l;|bij||-j
Hy () =H, ()~ H, ) > [Zn:|bii| L™ (1+[K])+ Li”i|bji|(1+||i|+cj |qj|)
- -

I s)- 1 0] S X ) bR

Thus we have
Then the unique equilibrium solution X of (4) is globally

ZH.,(X) —Zl =X + Zbu (1+1) [ (X J)_fj(o):|| asymptotically stable.
4 n . Proof. From (4) and (5) we have
22| 1% |—Z|b”-|
i=1 j=1

1+ IIi
ai| |‘fj(xi)_fj(o)‘:| {(X(t) X)— quu(f( (t— 5))_f( ))}
Zi 1_Lizi:|bji|—:llxi | :_ai(xi(t)_xi)'f‘;bij(fj( j(t))—fj(xj;))

1+|Ij|
a,

n 1+‘|_‘ +'ijZ::bu(fj(Xj (t=2))=f, (). (14)
Let g:'—q]zin {1_ LiZ‘bii‘ : } Consider
1=1,2,.., n J:l a]
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E(x)(t)
z{{< -x)-a3n0h (t—a)>-fj(x;)>}2
oSl o S | S|

wi Sl S [ -1

[Eh

i j ‘xi (s)—xj‘2 ds.

o Sho [ S0 | o
Differentiating with respect to ’t” and Using (14), (6) and

using the inequality 2ab < 7a® +77'b* for any 77 > Ofor
all real a, b we have

394

+|||2\b.,\L( b
+|q|2\b.,\L( [ (t=)=x;[ 4 (0)-x o

+L,z[;\bp\\qj\]@bﬂ‘]Lixl(\tx._(;)_ \‘]

, n n 77Xi(t—O'))—Xi*2
[zwbﬁuq,-\][zwb,-iHu\}[ Heors)
i=1 i=1 +7 1‘xi (t—r)—xi‘

o\ vl Skl | S

+L§n[§\bji\\qjU@b“w"‘ﬂ

I ®-xf -po(t-0)-x[ |
oSSl S |
[ )= - e-r)-5T ]}

(16)

X

Rearranging the terms we have



X)) '"zl{_zai (% (t)-x|
+ni\bjiuj\xi (t)_x:\ai\bwl\xi (t)-x
ot Sl =)=+
2o
i blofofs (o)1
e[Sl S s -e1-+1
st S | S -7

| 2l | Sl ol t-0)-x
(Sl Sl
JuaSsin ot Spol 301

o (Sl | Sl [ -4y -o)-

S

[ (0)-xf - (t-e)-x

*‘2

‘X (t r ‘

17)
This intern leads to
L U
i=1

Where
H Za-(2‘|q'|’712n:‘bu“‘)

{n S L (1)L 2 (a2
+L2

) DY e ) |

2 . 2 E(x
_X" il ;‘bij‘l‘jai‘xi(t)_xi‘
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Thus we have
EXO g t5o0.
dt

dE

Since ———

n

<2u()-x[

i=1
Thus we have

t)+iZ:1:yij;‘Xi (s)-

since E (X)(t) >0 we have

xi*‘zdss E(x)(0).

gﬂii‘xi (s)—xi*‘zds < E(x)(0).
Zn:j‘xi (S)_Xi*‘zds <o, (19)

i=1 o

Now we prove that ||X — X*” , are bounded.

Since Z;:ﬂi_:[‘xi (S)_

From (19) we have E (x)(t) < E(x)(0).
Thus foreach i=12,...n.

X ‘zds >0.

Xﬂ(x —x)- q,Zb(f(
E(x)(0).

-0))-;(x))

<

So
‘(xi (t)—xi*)‘ SQ/E(X)(O)

+ qizil:loij(fj (x,. (t—a))— f, (X’})) :

Using (6) we have

t)—xi*‘g,/E(x)SO)
+L |qi|jz_;‘binxj (t—a)—xﬂ.

This implies we have

sup. (% (5)=x)| < JE(%)(0)
se[-7,0
 sup i (5)x L, (Z‘bjinjU.
S ]:l
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Thus we have

E(x)(0)
113 o

)—Xi*‘ is uniform bounded. Thus

sup ‘(x - X )‘ . (20

se[—y,0]

Therefore ‘Xi (S

[x) =]
Without loss of generality, we can assume that |, = 0

in equation (4), and f,(0)=0, i=12,....n to make it
computationally tractable and to provide in depth analysis.

is also bounded.

The following lemmas can be used in the derivation of L" -
stability.

Lemma 2: Let 1< p <oo.Then for a, b, 7 nonnegative
we have

() (a+b)? <2°(a" +b”) .
(i) (@a+7b)? >af + prba’™*
hence prba®™* <2°(af +7°b").

Lemma 3: If O0<p<oo,puty,= max{L, 2"} then

for arbitrary complex numbers «, 5,
p p p
le=B" <7, (al” +|a]").
Definition 2: The norm of an element y — Yy Yoreor Vi)

n
of Euclidean n-space E" is given by |y| = Z|yi|
i=1
Lemma 4 [1]. Let V be a Liapunov function on E such that

Vig, (t.u) < —clu” on
Dy ={(t.£)/t=0,]&<M},0<M <0,

for somec>0, p>0. Then U=0is L" - stable for (A)

[where u'=f(t,u) (A).

Lemma 4[1]: If there existsV (t,u), a Liapunov function

then U = Oiis stable for (A) )

396

Theorem 3: Assume that the conditions for p>1

ai?’P[p—Zp}’ﬁ_l ‘ql ll‘ "L 1]>2pz‘b ‘L 1+|I
=t
+2pLi?’;?Z‘bji‘JrzpLF?’S(Zn:‘inU[ZH:‘qJ J"plj
=t ' '
¢St Sl ]

+L{“(i\qj )| a ]

R

(21)
Thenthe X =0 is L - stable for the system (4).
Proof.
Let E (t, X) = Zn: E, (t, X) , Where
- P
qZUJ( o)) 0. @

Clearly E; (t, X) is positive definite, E; (t, O) =0,
t>0and E (t, X) is continuous on D,, .Now we verify
that E; (t, X) is locally Lipschitzian on Dy, .For any
(t.x),(t,X) € Dy, =D,, —{(t,0)/t >0},

Consider

Ei (t,X)— Ei (t’f()

q.Z.J fi(x(t-0))
q.Z.J f(%(t-0))

x[(xi (1)-%()-a. 8, (1, (x, (t-0)) 1, (% (t—a)))].

i1
sing the inequality forany I, I |,

P P P-1, P
‘I’l —I’Z‘SP(I’1 +T, )|I’1—r2|wehave
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E ('[ X)— E ('[ )~() Differentiate equation (22) w.r.t ‘1 and using equation (4)
AN AN - and lemma 3 we have
p- _
W (1) 38, (x (t-0) dE, (t,) 0,1 (x, (10| 1
i i = i i\ T -0 z ij J(
<p .
+% (t)—qigbu f,(%(t-0)) =0 Zb” J( )

x[(xi(t)—ii(t))‘qii;,bij(fj(xi(t_a))_fj(xj(t_a)))]. I ( Z‘ k ‘ (% )‘_1
- <py,IIx (t) 1Y gb s (t-o) "

Using lemma 3 and inequality (6) we have

E, (t,X)~E, (1.%) [-alx (t)+ Z\b.,Hf 1)+ |'|Z\bqu il

X (t)‘p_l_'_Z‘ i u‘ Lp 1‘ i(t_a)‘p_l where y, = max{L, 2°%}. .

< pr,
Simplifying we have

Hx (O by 1, (o) :
-a,|% (t)|+2|bi1”fj (x(t)

j=1
p-1 =t
s -5 01l L o) -5, - a\f—wnﬂ n
{ J +|'i|§|bu'”fi(xj(t‘7))

where 77, =max{L,2°*}. From the definition of L |x (t)|+zn:|b ”f (x )
Dy, we have|x|<M,|)~(|< M, +Z|Q. ”|P1‘f ))‘ | TG R
L _
£ (13-, (%) AR 0-)
n ‘ ‘ Thus we have
MPMZ by LM dE,(t.x) b
<o, : | — S a|x (1) pr,|x (t)
1 n
+M p71+2‘qibij‘p LFJ-HM P + p)/p|Xi (t)|pilz‘binfj (XJ (t))
=

X[‘Xi(t ‘ |Q|Z‘b,J‘L‘X (t-o)-%(t- 0)@ P75 (t)|pil||i|zn:‘binfj(Xj(t_f
|Z\ql 0| #*J1,(x, (1)
Wherelqzl—i-i‘qI “‘ Lpl +[Jz;,‘buH U[Z‘q u‘pl‘ ( t o-))‘ j
WSl s 0= San 6 s -

j=1

<2pn,M™k, £1+ LiZ\bjiqi\ }|x—>?|.

Thus we have E, (t, X) is locally Lipschitzian on D,’:,l .
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From (6) and rearranging the terms we have

dE; (t,x)
dt

)‘p + prZ‘bij‘Lj ‘Xj (t)‘pil‘xi (t)
+wpIIIZ\b.,\L s (0] (=)

eora o] s 0 o))

sort S| Shanl” s ol e-o)

<-a;py7, ‘Xi (t

; ; ; p-1 P(aqP PRP
Using the inequality py ba®" <2°(a®+y; b")
for any non- negative a,b we have

=1
o2 S Sl eS|
- =1 j=1

dE; (t,x)
dt
<ap b (O + 22 [, 0 72 0

2 IIili\bu (% OF +72 e

+zpaz\q,”\w1(\ (t=0) +7¢x ()

2| S| Slon [ 0011 2

398

4,07, +2pJZil:‘bij‘ L, +2p7§i‘bji‘l‘i

S| 2Dk 272 an 4 s of
+2°L0y! [Z\bj\j[z‘qj J° 1]
2 (S -
2 Slan, 78 Jit-o)f
)
w200 ;\b,\j[;\q, ,.\“]|x (t-o)
Sjap x(-o

]

Z;‘qu“‘ j ’Ix, (t- r|.

]

+2°LP ;‘bJHI j

Rearranging terms we have

w027 Sl
:

ks 2Lz S ) o

+2ery£[i\bﬁ\][Z\q, il ]

(S S|

g

+2° |Xi (t—0)|p

2t S| St [ -0 2 o) )+zpﬁ(§\bﬂw]{1+w1[i\q, o) s -

(23)
Simplifying, we have

j=1
(24)
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LetF(t,X)=Zn:Fi(t,X),where i (t )
i=1 ilL

Lr[gwbﬁuumj[i\q, 1"
dt

n
- p-1 p- l
+Li . ‘qj JI‘

_g@bﬂ\(u\lj\)j[j [, \] my e (O - (- o)l |

_I_L— \ pla t-o

f’ 1(2\% ; ] n |

) : t_ +pigz‘jiHj‘[+ipl Z‘le‘pl:l
+sziy;’(§\bﬁHh\]{1+Lr1[J_ ap \]] [Intofes ZUL ?I)Ep’j; (Itjl)f [ q J

(25) . (26)
Clearly F (t,X) is positive definite, F (t,0)=0 | Define
t>0 and is continuous on D, . Now we verify that V (t,x) = E(t,x)+F (t,X)

~—

F(tx)=2°

F (t, X) is locally Lipschitzian on D;, . For _ Z”: E (t, X)+Zn: F(tX),t> 0, (27)

any (t, ), (t,X) e D,, =D,, —{(t, 0)/t> O} , consider i=1 i=1

F (t’ X)_ F; (t’ X) Clearly V (t, X) is positive definite, V (t,O) =0,t>0
LP (i‘bii‘(l“L‘ljDj(i‘qibji‘ pl) and is continuous on D,, . Now we verify that V (t, X) is

=2° = - locally Lipschitzian on D,; Y (t, X) is locally
+L'p71 Z‘qJ J" "a Lipschitzian on D,T,, .Differentiating (27) w.r.t ‘1’ and using

(24) and (26)

SICEE (s)\) i
2177 Sl j[mp—l s’ H Ta |
, B

< (x F -Js o) s ] |
<> +2pjz_;‘bij‘Lj(1+|Ii|)+2”Liy§jZ‘bji‘ ‘xi(t)‘

Using the inequality for any I, I i1

= < p(K 7 )n - +2pLFy’?(Zn:‘b"“}[i‘q’ ! _1]
j=1 i=t

By applying the similar procedure for E; (t, X) is locally

Lipschitzian on D,’:,, as verified above, it can easily verify P Zn:‘b ‘(1 ‘I ‘ Z”:‘ ‘ p-1
* o[ oo, (2]
that F (t,X) is also locally Lipschitzian on D, . LoP ' i1 ! . -1 qJ 4 ‘X (t ) P
(t—-o
Differentiate equation (25) w.r.t ‘1’ 1| N = '
+Li Z‘ql J|‘

2L (g\bﬁuuj\]{u Lfl[ji_\q, ,,\wﬂ\x (=)
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c{Shoen) Snd
i 1(2\% ; “aj]

+2°

203 { S| Sond | s b -] |

Simplifying

dv (t,x)

=l

+2°

+H”‘l[ilqj i ]

+vai[;|bji|||j|j[1+Lr1[;|q, ,.|“Hlx ) -

Thus we have

dv (t,x)
a‘)/p[ _2p p712|q| |]| P le 1]

dt
—2PZ|bU|L (1)) +2° Ly} Z|bji|
J,

k iy {gbjiﬂ[j Jajb| _1]

+L|pl[1i‘qJ jl‘ P l j

_a_yp{p_zpygllzhl |]| a 1Lp 1]

+2°y |b|L (1], )+2”Lyp2|b|

S

Lr[glbﬁl(““iU](i"" " ] (o)

| S| Shan

24 (S 1017 Sfan, |

e - (- o)f |

o)
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where

ﬂ=ai7p(p—2" p’li\qu by | L] lJ

—ijZi;‘bij‘Lj(l+|| ZpL.ypZ\bu\

—2po7§(]an:‘in0(] a5 _1]

[e(Zpeend| e
+L!”[_ o, u\“ajJ

L (é‘bji“lj‘J{l+ L{’l(g‘q, s H

(28)

dv (t,
From (14) >0 then we have ((“ X)SO, t>0.

Hence V(t,X) is Liapunov functional for (4).Now we

verify that V'(t,X)S—/1|X|P on D,,, for some 1 >0,
p>1.

dV (t,x)

Since < —,u‘x (t)‘p.

From lemma4, X =0 is L” - stable for (4).

Example 1. Consider the network described by the system
(4) with i=1, 2

1 1 -1

a1:7 a2—8 ql__E QZ:§ |1:7’
1 11
Sotub il

Vo= max{l,2p 1.

Further choose f; , as follows for i=1, 2

‘ f.) (tanhLx
L f,) ltanhLyx )

These parameters of the network satisfies conditions of
Theorem 1
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len:\bjl\ M=o.1029< 1,
i1 a

n (‘Ij‘+l)
L, > |o,| *~——~= 0.0607< 1.
j=1 aj
If n=1/2,
al[Z—qlnlzn:biijjzllASSS
j=1
{;b”Lm-l(1+|1)++<ﬁj§;dn(1+mj+c,.qj)
+K12(77+771)[jz_l:dj1quE;djl(Hmj)jJ:ZBZSS,
al(Z—qlnlzn:biijj:M.Q??S
-1
>(ZbljLjn'1(1+ll)+KinZdjl(l+mj+cj a))
K+ )[Zdjlq j(Zdﬂ(Hm )D:z.zssl,

Thus conditions of theorem 2 are satisfied.
If p=2.1 conditions of Theorem 3 are

A =ai7p(p—2"y§ 12\(1. by | ‘1L"‘1]

= 292\bu\ L, (1+]L])+ 2P|_ng\bJ,\

j=1 j=1

ol ghgont
TSl [ S

+Lip_l(zn:‘quji‘ p_lajJ
=

2w (Sl | 1o Sl |

A =13.2483 > B,=10.2520,
A, =13.2483 > B,=10.2520.

+2

Therefore conditions of Theorem 2 and 3 are satisfied,
thus the equilibrium of the network is asymptotically stable

and Lp-stable. If 7 =5, conditions of theorem 2 are not
satisfied and if p=1.5

Padmavathi et al.

Then conditions of theorem3 are not satisfied. So
P, 77 plays important role while satisfying the conditions of

theorems 2 and 3 respectively.

Consider the model (1) with varying inputs, then the
model become

d 2 I(t
q|z ij j( )_g

+ib., f (%, (1)

+,>b, fj(xj (t=7))+ 1,(t), where 1,(t) =a,a(t). (29)

j=1

=-ax (t

Due to the fact that the input functions are time varying
(no longer constants), the model (29) cannot have pre
specified equilibrium patterns. In the applications of neural
networks with optimization problems, state and output
convergence of the network is basic constraint. some of the
reasons to consider state and output convergence of the NNs
with time-varying inputs are discussed in( [5],[18]). Most of
the research on these models (29) is focused on the output
convergence analysis and it is stated that studying the state
convergence of NNs with time varying inputs as model (29)
in general is a difficult problem ([11],[18],[24],[,25]). In
our investigation we study state convergence and provide
analysis in restricted settings (A1-A3).

We assume that

(A1) the functions f; ,i=12,..,n, are globally Lipschitz
continuous, monotone none decreasing activation functions
and that is there exist L; > 0 such that

OSMS L, (30)
u—v
forany u,veRand u#v. And also assume
<& xeR ,i=12,..,n

(A2) 1,(t), are locally Lipschitz continuous that is if for
every u
restricted to U,
(A3) 1.(t) satisfies the conditions

tlLrg) lL(@t)=1, (31)

in R there exist neighborhoods U such that I,

respectively are Lipschitz continuous.

where I, are some constants. Thatis lim I (t)=1.
t—>o

Theorem 4. Assume that (Al), (A2) and (A3) are satisfied
and there exists a constant vector X € R" such that
—axX +@1+)Bf(X)+1=0 (32)
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Then given any X, € R" the system (29) has a unique
solution X(t;X,) defined on [0,00).
Proof of Theorem 4 is discussed in [5].

Now we obtain sufficient conditions for the equilibrium
pattern to be globally exponentially stable. The equilibrium

pattern Xi* of (29) is said to be globally exponentially stable
if there exist constants A >0 and 7>1 such that
||xi ) — xl*” < ||¢I — xi*||77 e for any t > 0 We denote

H¢, — X,*H < sutpOH¢I - Xi*H, where X the unique
—y<t<
equilibrium of the system (29).

Theorem 5. Assume that the conditions (Al), (A2), and
(A3) are satisfied and further suppose that there exist a

positive constant a=min{a,} such that

1<i<n
(Bl +a )
" 3] @

Then the equilibrium W of system (29) is globally
exponentially stable.

a>¢e=

Proof of Theorem 5 is discussed in [5].

IV. CONCLUSION AND REMARKS

In the present investigation, the authors have considered
class of continuous- time hysteretic neuron model. Stability
analysis is much desired for these systems from the point of
view of the real world nature. We have obtained sufficient
conditions for Input-output stability of a unique equilibrium.
We have obtained asymptotic stability of the solutions of
this system. The results are explicit in the sense that the
criteria obtained are easily verifiable as they are expressed
in terms of the parameters of the system. These models can
be applied to a variety of real time applications such as the
higher order hardware control systems can be replaced by
this neural network for reducing the complexity, these
neural networks can be desired and trained to filter out
varying levels of noise interference in the channel and
provide excellent data security and these neural networks
can also be employed for image extraction in a varying
noise interfering channels. In order to provide data security,
a message (usually referred to as the plaintext) will be
transformed by the sender into a random looking message
(usually referred to as the ciphertext) by using an reversible
mapping and transmitted to the receiver. However, during
the transmission of the ciphertext in a noisy channel, the
ciphertext gets altered disallowing the legitimate receiver to
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correctly get back the plaintext. To address this problem, all
the ciphertexts(noise-free) can be stored as stable states of
our network, so that whenever a noisy ciphertext is input to
the network it converges after finite number of iterations to
one of the stable states(the one to which its Hamming
distance is the minimum) which will result in the correct
plaintext after decryption.

The message to be transmitted will be stored as a binary
image [3]. This image will then be encrypted using CDMA
spreading technique, where PN-sequences will be generated
using an LFSR whose connection polynomial is primitive.
Noise of certain level will be added to the encrypted image
and transmitted to the receiver. The receiver would then
input this noisy pattern to the network (The network would
store all the encrypted images of the messages that will be
eventually transmitted). The pattern output by the network
will then be decrypted using CDMA despreading technique.
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