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Abstract: In this paper attention has been paid to the study 

of a new ranking procedure for trapezoidal intuitionistic 

fuzzy number (TRIFN). There are numerous methods for 

ranking of simple fuzzy numbers but, we lack of effective 

methods for ranking of intuitionistic fuzzy numbers (IFN). 

To serve the purpose, the value and ambiguity index of 

TRIFNs have been defined. In order to rank TRIFNs, we 

have defined a ranking function by taking sum of value and 

ambiguity index. To demonstrated our proposed approach 

one  numerical example has been presented. 

Keywords: Intuitionistic fuzzy number(IFN), trapezoidal 

intuitionistic fuzzy number(TRIFN), value index, ambiguity 
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I. Introduction  

Zadeh introduced Fuzzy set theory [50] in 1965. Later on 

Atanassov generalized the concept of fuzzy set and introduced 

the idea of Intuitionistic fuzzy set[3],[4],[5]. The concept of 

fuzzy numbers and arithmetic operations with these numbers 

were first introduced and investigated by Chang and Zadeh [9] 

and others. There exist a large amount of literature involving 

the ranking of fuzzy numbers[1],[2],[10],[11],[20] and decision 

making with fuzzy numbers[14]-[16]. The notions of 

intuitionistic fuzzy numbers in different context were studied 

in [23]-[27],[29],[30],[33],[35],[36],[41],[43] and applied in 

multi criteria decision making problems [29]-[32],[41]. 

Intuitionistic fuzzy sets (IFSs), characterized by three functions 

expressing degrees of membership, non-membership, and 

hesitation (or indeterminacy), have received increasing 

attention since their introduction by Atanassov [3[-[5]. 

 

 

 

Atanassov and Gargov [6] proposed the notion of the interval-

valued intuitionistic fuzzy set (IVIFS), which is characterized 

by a membership function and a non-membership function 

whose values are intervals rather than exact numbers. Based on 

IVIFS, Xu [43] defined the notion of interval-valued 

intuitionistic fuzzy number (IVIFN) and introduced some 

operations on IVIFNs. IVIFNs have huge amount of 

application in decision making processes 

[12],[13],[19],[22],[28]. Further developments of IFS theory, 

including intuitionistic fuzzy geometry, intuitionistic fuzzy 

topology, intuitionistic fuzzy logic, an intuitionistic fuzzy 

approach to artificial intelligence, and intuitionistic fuzzy 

generalized nets can be found in[37]. Since they are very 

useful and powerful tool in modeling imprecision or 

uncertainty, valuable applications of IFSs have been developed 

in many different fields, including pattern recognition 

[23],[34], medical diagnosis [17], drug selection [21], 

microelectronic fault analysis [25],[38], weight assessment 

[39], and decision-making problems [24],[26]-

[29],[41],[44],[49]. The ranking of intuitionistic fuzzy numbers 

plays a main role in real life problems involving intuitionistic 

fuzzy decision-making, intuitionistic fuzzy clustering. Recently 

few methods for ranking IFNs has also been introduced 

[29],[33],[36],[41],[49]. Wang and Zhang[41] defined the 

trapezoidal Intuitionistic fuzzy number (TRIFN) and gave 

ranking method which transformed the ranking of TRIFNs in 

to ranking of interval numbers. Other than Wang and Zhang, 

Mitchell[33] introduced ranking of IFNs. Nayagam et al.[36] 

described Ifns of special type and introduced a method of IF 

scoring of IFNs as a generalization of Chen and Hwang's 

scoring for ranking IFNs. In many applications, ranking of 

interval-valued intuitionistic fuzzy numbers is an important 

component of the decision-making process. Xu[44] and Xu and 

Chen [45] proposed score function and accuracy function to 
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rank interval valued intuitionistic fuzzy numbers. Ye [49] also 

proposed a novel accuracy function to rank interval-valued 

intuitionistic fuzzy numbers. However in some cases the 

proposed techniques for ranking interval-valued intuitionistic 

fuzzy numbers using a score function or an accuracy function 

do not give sufficient information about alternatives. Li [29] 

defined the value index and the ambiguity index of triangular 

intuitionistic fuzzy numbers and developed a ratio ranking 

method for solving multi-attribute decision-making problems. 

Though notion of TRIFNs have been established earlier, in this 

paper we have tried to introduce TRIFNs in a more simplified 

way which is easy to handle and has a natural interpretation. 

Furthermore, a new ranking procedure for ranking TRIFNs has 

been introduced. 

The remainder of the paper is organised as follows. In Section 

2, we first define TRIFNs, and arithmetic operations of 

TRIFNs followed by definitions of cut sets. Section 3 defines 

value and ambiguity indices for membership and non-

membership function which is further followed by proposed 

ranking method. Section 4 contains the conclusion. 

 

                   II. Basic Definitions   

    The definition and operations of TRIFNs 

Definition1 A TRIFN   ̃  〈(           )   ̃   ̃〉 is a 

special Intuitionistic Fuzzy set on a set of real number R, 

whose membership function and non-membership function are 

defined as follows: 
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respectively as given in Figure 1. The values aw~ and au~  

represents the maximum degree of membership and minimum 

degree of non -membership, respectively, such that the 

conditions 10 ~  aw , 10 ~  au 10 ~~  aa uw   

are satisfied. The pa-rameters aw~ and au~ reflects the 

confidence level and non-confidence level of the TRIFN  

 ̃  〈(           )   ̃   ̃〉, respectively.  

Let )()(1)( ~~~ xxx aaa   , which is called an IF index 

of an element x in a~ . It is the degree of the indeterminacy 

membership of the element x in a~ . 

If 01 a and one of the four values 4321 ,,, aaaa is not 

equal to 0, then the TRIFN  ̃  〈(           )   ̃   ̃〉 is 

called a positive TRIFN, denoted by 0~ a . 

Likewise, if 01 a and one of the four values 4321 ,,, aaaa is 

not equal to zero, then the TRIFN  ̃  〈(           )   ̃   ̃〉 

is called a negative TRIFN, denoted by 0~ a . 

 

 

 

 

 

 

 

 

 

It can be easily seen that 1)()( ~~  xx aa  for any Rx if 

1~ aw  and 0~ au which reduces a~ to 

 ̃  〈(           )    〉 , a trapezoidal fuzzy number. Since 

the concept of TRIFN is a generalization of that of the 

trapezoidal fuzzy number, the arithmetical operations of  

TRIFNs [4] can be defined in the way similar to that of 

trapezoidal fuzzy numbers as follows: 

Definition 2 Let ̃  〈(           )   ̃   ̃〉 and  ̃  

〈(           )   ̃    ̃〉be two TRIFNs and  be a real 

number. The arithmetical operations are listed as follows: 

},max{},,min{);,,,(
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~~~~44332211 baba uuwwbababababa 

},max{},,min{);,,,(
~~

~~~~14233241 baba uuwwbababababa 
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 -cut sets and  -cut sets of Trapezoidal Intuitionistic fuzzy 

number (TRIFN): 

Definition 3 [4] A - cut set of a TRIFN 

 ̃  〈(           )   ̃   ̃〉 is a crisp subset of R defined as  

})({~
~   xxa a where aw~0  . 

Definition 4 [4] A  - cut set of a TRIFN 

 ̃  〈(           )   ̃   ̃〉 is a crisp subset of R defined as  

})({~
~   xxa a where 1~  au . 

It can be easily followed from the definition of TRIFN , 

Definition 3 and Definition 4 that a~  and a~ are both closed 

sets and are denoted by )](),([~
~~  aa RLa  &

)](),([~
~~  aa RLa  respectively. The respective values of 

a~  and a~ are calculated as follows: 
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       Support of a TRIFN 

Definition 5 The Support of a TRIFN 

 ̃  〈(           )   ̃   ̃〉 for the membership function is 

defined as  

}0)({)~(supp ~  xxa a . 

Definition 6 The Support of a TRIFN 

 ̃  〈(           )   ̃   ̃〉 for the non-membership function 

is defined as  

}1)({)~(supp ~  xxa a . 

 
 

 

III. Ranking of TRIFNs based on 
Value and Ambiguity  
 
      Value and ambiguity of a TRIFN 

        The value and ambiguity of a TRIFN can be defined 

similarly to those of a TIFNs introduced by D.F.Li [29]. 

Definition 7 Let a~  and a~ be an  -cut set and a  -cut set 

of a TRIFN  ̃  〈(           )   ̃   ̃〉, respectively. Then 

the values of the membership function )(~ xa  and the non-

membership function )(~ xa for the TRIFN a~ are defined as 

follows: 
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respectively, where the function )(f is a non-negative and 

non-decreasing function on the interval ],0[ ~aw with 

0)0( f  and  
aw

awdf

~

0

~)(  ; the function )(g is a 

non-negative and non-increasing function on the interval 
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The value of membership and non-membership of a TRIFN 

a~ can be derived in analogy with value of membership and 

non-membership for TIFN [29]. 

The value of the membership function of a TRIFN a~ is 

calculated as follows: 
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In a similar way value of non-membership can be evaluated as 

follows: 
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With the condition that 10 ~~  aa uw , it follows that 

)~()~( aVaV   . Thus, the values of membership and non-

membership functions of a TRIFN a~ may be concisely 

expressed as an interval )]~(),~([ aVaV 
. The following 

theorem describes the linearity property of value of 

membership and non-membership as well: 

Theorem 1 Let  ̃  〈(           )   ̃    ̃〉 and  ̃  

〈(           )   ̃    ̃〉 be two TRIFNs with aa uw ~~  and 

bb
uw ~~  .Then, we have )
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Hence, the proof. 

Definition 8 Let a~ and a~ be an  -cut set and a  -cut set 

of a TRIFN  ̃  〈(           )   ̃   ̃〉, respectively. Then 

the ambiguities of the membership function )(~ xa  and the 

non-membership function )(~ xa for the TRIFN a~ are defined 

as follows: 
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respectively. It can be easily followed from Definition of 

)~(aA  and )~(aA that 0)~( aA , 0)~( aA .  

The ambiguity of the membership function of a TRIFN a~ is 

calculated as follows: 
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Similarly, the ambiguity of the non-membership function of a 

TRIFN a~ is given by: 
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With the condition that 10 ~~  aa uw ,it follows that 

)~()~( aAaA   . Thus, the ambiguities of membership and 

non-membership functions of a TRIFN a~ may be concisely 

expressed as an interval )]~(),~([ aAaA  . 

From the definition of ambiguities of the membership and non-

membership function of a TRIFN ,it readily follows that : 
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Similarly, 
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Hence, the proof.  

 

      The proposed ranking method 

 

In this Section, a new ranking method is introduced by taking 

the sum of value index and ambiguity index. Earlier, a ranking 

method for TIFNs has been introduced by D.F.Li [29] which 

was based on ratio of value and ambiguity index. Though the 

ranking procedure introduced by Li was more generalized and 

applicability was more  wide, but the ratio ranking method lack 

in linearity property. It can be easily seen that for ratio ranking 

method ),
~

(),~(),
~~(  bRaRbaR  . In our proposed 

method, we have tried to rectify this by taking linear sum of 

value and ambiguity indices. 

 

Definition 9 Let ̃  〈(           )   ̃   ̃〉 be a TRIFN. A 

value index and ambiguity index for the TRIFN  ̃are defined 

as follows: 
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With our choice 
2
1 , the value and ambiguity indices for 

TRIFN reduces to the following: 

2

)~()~(
)

2

1
,~(

aVaV
aV

 


2

)~()~(
)

2

1
,~(

aAaA
aA

 


 

The proposed ranking method is as follows: 

 

),~(),~()~(
2

1

2

1 aAaVaR 
 

 

It is quite easy to see that the above proposed ranking method 

satisfies the seven axioms namely the Reasonable properties 

proposed by Wang &Kerre [41]. Furthermore, the raking 

procedure is a two-index ranking approach as value of )~(aR

depend upon both )~(aV and )~(aA .
 

 

Remark: Since we are taking 
2
1  throughout the paper, 

instead of )
2

1
,~(aV and )

2

1
,~(aA we shall write )~(aV and 

)~(aA respectively.It can be easily seen that the value index 

)~(aV ,  ambiguity index )~(aA and ranking function )~(aR

has the following properties: 

 

Theorem 3 Let  ̃  〈(           )   ̃    ̃〉 and  ̃  

〈(           )   ̃    ̃〉 be two TRIFNs with aa uw ~~  and 

bb
uw ~~  .Then, we have )

~
()~()

~~( bVaVbaV  . 

Proof: We have 
2

)
~~()

~~(
)

~~(
baVbaV

baV



  

2

)
~

()~()
~

()~( bVaVbVaV  


 
                                          [UsingTheorem 1] 

2

)
~

()
~

(

2

)~()~( bVbVaVaV  



 )

~
()~( bVaV   

 

Theorem 4 Let ̃  〈(           )   ̃    ̃〉 and  ̃  

〈(           )   ̃    ̃〉 be two TRIFNs with aa uw ~~  and 

bb
uw ~~  .Then, we have )

~
()~()

~~( bAaAbaA  . 

Proof: We have  

2

)
~~()

~~(
)

~~(
baAbaA

baA



  

2

)
~

()~()
~

()~( bAaAbAaA  


 
[Using Theorem 2]

 

2

)
~

()
~

(

2

)~()~( bAbAaAaA  





 
)

~
()~( bAaA   

 

Theorem 5Let  ̃  〈(           )   ̃    ̃〉 and  ̃  

〈(           )   ̃    ̃〉 be two TRIFNs with aa uw ~~  and 

bb
uw ~~  .Then, we have )

~
()~()

~~( bRaRbaR  . 

 

Proof  We have )
~~()

~~()
~~( baAbaVbaR   

)
~

()~()
~

()~( bAaAbVaV   

                                [Using Theorem 3 and 4] 

)]
~

()
~

([)]~()~([ bAbVaAaV   

)
~

()~( bRaR   

 

Let 
jj aajjjjj uwaaaaa ~~4321 ,);,,,(~ 

  ; 

(i=1,2,3,4;j=1,2,3,..........N) be N  numbers of TRIFNs.  

 

The whole procedure of ranking TRIFN by the proposed 

method is stated as follows:
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(i) Evaluate )~(),~(),~(),~( jjjj aAaAaVaV 
 as defined in 

Definition 7 and 8 respectively. 

(ii) Evaluate )~( jaV  and )~( jaA from Definition 9 

 

(iii) Finally evaluate ),~( jaR by taking sum of )~( jaV and

)~( jaA . Then the ranking of TRIFNs is according to 

 

 (a)if )~()~( kj aRaR   ,then 
kj aa ~~  . 

 

(b)if )~()~( kj aRaR   ,then 
kj aa ~~  . 

 

 (c)if )~()~( kj aRaR   ,then 
kj aa ~~  . 

 

      Numerical example 

 

To illustrate the process of ranking TRIFNs by proposed 

ranking method, we take three TRIFNs as follows: 

 

Let 2.0,5.0);8.0,5.0,3.0,1.0(~
1 a  , 

4.0,6.0);9.0,6.0,3.0,2.0(~
2 a and 

3.0,5.0);9.0,7.0,5.0,1.0(~
3 a be three TRIFNs. 

 

Step-(i): )~(),~(),~(),~( jjjj aAaAaVaV 
 respectively, are 

evaluated as follows: 

 

5.0
2

)5.03.0(28.01.0
)~( 1 


aV

 
2083.5.04166.0   

3333.08.04166.)~( 1 aV
 

29.06.04833.)~( 2 aV

29.06.04833.)~( 2 aV
 

2833.05.05666.)~( 3 aV

3966.07.05666.)~( 3 aV
 

 

Similarly, 

 

1833.05.03666.05.0
2

)5.03.0(2)1.08.0(
)~(  1 


aA

2932.08.03666.0)~(  1 aA
 

26.06.04333.0)~(  2 aA

26.06.04333.0)~(  2 aA
 

2.05.04.0)~(  3 aA  
28.07.04.0)~(  3 aA  

 

Step-(ii):The value indices )~( jaV and ambiguity indices 

)~( jaA  for three TRIFNs are calculated as follows: 

 

2708.0
2

3333.02803.0
)~( 1 


aV

 
29.0)~( 2 aV  

3399.0)~( 3 aV  

2382.0
2

2932.01833.0
)~( 1 


aA

 
26.0)~( 2 aA  
24.0)~( 3 aA  

 

Step-(iii): )~( jaR for  j=1,2,3 are calculated as follows: 

 
509.02382.02708.0)~( 1 aR

55.026.029.0)~( 2 aR

5799.024.03399.0)~( 3 aR  

From the above calculation we can conclude that 

)~()~()~( 123 aRaRaR  which implies 
123

~~~ aaa  . 

 

        IV. Conclusion 

 

  In this paper we have defined value and ambiguity indices of 

TRIFNs in analogy with the definition of value and ambiguity 

of TIFNs defined by D.F.Li [29]. But instead of ratio of value 

and ambiguity indices we have taken sum of value and 

ambiguity indices. It is easy to see that the proposed ranking 

function satisfies linear property. However, the above proposed 

ranking method is to implement and evaluate and has a natural 

interpretation. Moreover, the result obtained by this method 

also agrees with human intention. 
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