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Abstract: Many real world systems modeled as graph or 

networks, which the characteristics of interaction between 

vertices are stochastic and the probability distribution function 

of the vertex weight is unknown. Finding the maximum clique 

in a given graph is known as a NP-Hard problem, motivated by 

the social networks analysis. The maximum clique of an 

arbitrary graph G is the sub-graph C of G, Such that all 

vertices in C are adjacent in G and have maximum cardinality. 

In this paper an algorithm based on distributed learning 

automata is presented to solve maximum clique problem in the 

stochastic graph. Several experiments are designed to evaluate 

the proposed algorithm. Experimental results indicate that the 

proposed algorithm have a good performance in stochastic 

graph. 

Keywords: maximum clique problem, NP-Hard, stochastic graph, 

learning automata, distributed learning automata, social networks. 

 

I. Introduction 

Let G=(V,E) be an undirected graph with vertex set V={1, 2, 

…, n} and edge set EVV, A clique  [1]–[4]of G is the set 

of vertices CV, such that i,jE for all i,jC. A maximum 

clique is a clique with maximum cardinality among all 

cliques of G. Due to its numerous applications, the 

maximum clique problem is one of the most important NP-

hard problems [5] and it has been extensively studied in the 

literature such as clustering [6], [7] ,wireless sensor 

networks [8], social network analysis [9], etc. 

One of the most interests in the networks applications is 

finding dense subsets of vertices such as clique, which 

represents a group of entities or people, any two of which have 

a certain type of relationship with each other in social 

networks [10].  

In all existing methods for solving maximum clique, it is 

assumed that the graph is deterministic and thus the weight of 

its vertices fixed. But in the real world application, this 

assumption does not hold true, for example availability of 

people as nodes in the social networks or activity of routers in 

communication networks is varying over the time. So a 

stochastic is proposed based on this idea [11], in this paper the 

maximum clique problem in stochastic graphs is introduced, 

and then a Distributed learning automata-based algorithm is 

proposed for solving this problem, when the probability 

distribution function of the weight of the vertices is unknown.  

So far various methods have been proposed for this problem 

Including methods based on ant colony [12], immune 

genetic algorithm [13], reactive evolutionary algorithm[14], 

branch-and-bound algorithm [15], [16], etc. All methods 

presented cannot be used in new construction because they 

can be used only for certain structures. 

To evaluate the performance of the proposed algorithm, 

the number of samples needs to be taken by it from the 

vertices of the stochastic graph is compared to that of the 

standard sampling method. According to the simulation 

results the proposed algorithm in terms of the number of 

samplings is acceptable. The rest of this paper is organized 

as follows. In the section II, learning automata is 

introduced. Distributed learning automata is described in 

section III. In section IV, Structure of the stochastic graphs 

are introduced. the proposed algorithm based on learning 

automata for solving maximum clique in stochastic graph is 

presented in section V. The performance of the proposed 

algorithm is evaluated through the simulation in section VI. 

Finally section VII concludes the paper. 
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II. Learning Automata 

A learning automaton [11], [17]–[20] is an adaptive decision 

making unit that improves its performance by learning how 

choose the optimal action from a finite set of allowed actions 

through repeated interactions with a random environment. 

The action is chosen at random based on a probability 

distribution kept over the action-set and at each instant the 

given action is served as the input to the random 

environment. The environment responds the taken action in 

turn with a reinforcement signal. The action probability 

vector is updated based on the reinforcement feedback from 

the environment. The objective of a learning automaton is to 

find the optimal action from the action-set so that the average 

penalty received from the environment is minimized. 

The environment can be described by a triple E{,, 

c}, where {1, 2 , ..., r} represents the finite set of the 

inputs, {1, 2, ..., m} denotes the set of the values can 

be taken by the reinforcement signal, and c{c1, c2, ... , cr} 

denotes the set of the penalty probabilities, where the 

element ci is associated with the given action i. If the 

penalty probabilities are constant, the random environment 

is said to be a stationary random environment, and if they 

vary with time, the environment is called a non-stationary 

environment. The environments depending on the nature of 

the reinforcement signal  can be classified into P-model, 

Q-model, and S-model. The environments in which the 

reinforcement signal can only take two binary values 0 and 

1 are referred to as P-model environments. Another class of 

the environment allows a finite number of the values in the 

interval [0, 1] can be taken by the reinforcement signal. 

Such an environment is referred to as Q-model 

environment. In S-model environments, the reinforcement 

signal lies in the interval [a, b].  

Learning automata can be classified into two main 

families: fixed structure learning automata and variable 

structure learning automata. Variable structure learning 

automata are represented by a triple <, , T>, where  is 

the set of inputs, Q is the set of actions, and T is learning 

algorithm. The learning algorithm is a recurrence relation 

which is used to modify the action probability vector. Let 

a(k) and p(k) denote the action chosen at instant k and the 

action probability vector on which the chosen action is 

based, respectively. The recurrence equation shown by (1) 

and (2) is a linear learning algorithm by which the action 

probability vector p  is updated. Let i(k) be the action 

chosen by the automaton at instant k. 
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When the taken action is penalized by the environment (i.e. 

(n)=1). r is the number of actions which can be chosen by 

the automaton, a(k) and b(k) denote the reward and penalty 

parameters and determine the amount of increases and 

decreases of the action probabilities, respectively. If a(k) = 

b(k), the recurrence equations (1) and (2) are called linear 

reward-penalty (LR-P) algorithm, if a(k)>>b(k) the given 

equations are called linear reward--penalty (LR-P), and 

finally if b(k) = 0 they are called linear reward-inaction (LR-

I). In the latter case, the action probability vectors remain 

unchanged when the taken action is penalized by the 

environment. In the multicast routing algorithm presented 

in this paper, each learning automaton uses a linear reward-

inaction learning algorithm to update its action probability 

vector. 

III. Distributed Learning Automata 

A Distributed learning automata (DLA) [21] is a network of 

interconnected learning automata which collectively 

cooperate to solve a particular problem with many 

applications including: wireless  Adhac networks[22] , data 

mining[23] , etc. 

The number of actions for a particular LA in DLA is 

equal to the number of LA’s that are connected to this LA. 

Selection of an action by a LA in the network activates one 

LA corresponding to the action. Formally, a DLA can be 

defined by a quadruple A, E, T, A0, where A={A1, A2, …, 

An} is the set of learning automata, EAA is the set of the 

edges in which edge ei,j corresponds to the action ij of the 

automaton Ai, T is the set of learning schemes with which 

the learning automata update their action probability 

vectors, and A0 is the root automaton of DLA from which 

the automaton activation is started. 

The operation of a DLA can be described as follows: At 

first, the root automaton randomly chooses one of its 

outgoing edges (actions) according to its action probabilities 

and activates the learning automaton at the other end of the 

selected edge. The activated automaton also randomly 

selects an action which results in activation of another 

automaton. The process of choosing the actions and 

activating the automata is continued until a leaf automaton 

(an automaton which interacts with the environment) is 

being reached. The chosen actions, along the path induced 

by the activated automata between the root and leaf, are 

applied to the random environment. The environment 

evaluates the applied actions and emits a reinforcement 

signal to the DLA. The activated learning automata along 

the chosen path update their action probability vectors on 

the basis of the reinforcement signal by using the learning 

schemes. The paths from the unique root automaton to one 

of the leaf automata are selected until the probability with 

which one of the chosen paths is close enough to unity. Each 

DLA has exactly one root automaton which is always 

activated, and at least one leaf automaton which is activated 

probabilistically. For example in the figure 3, every 

automaton has two actions. If automaton A1 selects 3 from 

its action set, then it will be activate automaton of A3. 

Afterward, automaton of A3 will choose one of its possible 

actions and so on. 

IV. Stochastic Graph 

As mentioned, in the most scenarios of network 

applications, the weight of the vertices of graph is assumed 
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to be fixed, but in real world applications this is not always 

true and it varies with time. So we introduce stochastic 

graph [24]–[26] for modeling the real networks 

applications. 

A stochastic graph G can be defined by a triple G = V, E, 

F, where V = {v1, v2, ...,vn} denotes the set of vertices, E  

VV = {e1, e2, ..., em} is the edge set, and F={f1, f2, ..., fn} is 

the probability distribution describing the statistics of vertex 

weights. In particular, weight wi of vertex vi is assumed to 

be positive random variable with fi as its probability density 

function, which is supposed to be unknown for the proposed 

algorithm. In stochastic graph G, an maximum clique iV 

with weight of W(vi) vertices and expected weight of 

iW( ) defined as ={1, 2, ..., r} the set of all its 

maximum clique such that for all arbitrary vertices of 

vi,vji, vi and vj are adjacent. The maximum clique is 

defined as an clique with maximum expected weight. In 

other word, stochastic maximum clique *
 specifies as follow 
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where 
iW( )  is the expected weight of the clique i and 

the defined as below 
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Where 
iW(v )  denotes the expected weight of vertex vi. 

Therefore, the stochastic maximum clique of a given 

stochastic graph G is defined as the stochastic clique with 

the maximum expected weight. 

V. Proposed algorithm 

In this section, the proposed algorithm based on Distributed 

learning automata is described for solving the maximum 

clique problem in stochastic graphs. In this paper, weight of 

the vertices of the graph is assumed to be positive random 

variables and the parameters of the underlying probability 

distribution of the vertex weight are unknown. Therefore it 

is required to estimate the parameters by a statistical 

method. In the proposed algorithm, each vertices of graph, 

equipped with a learning automaton, indeed, a network of 

learning automata isomorphic to the stochastic graph. In 

this case, the network of automata can be formulated by a 

triple <A, , C>, where A denotes the set of the learning 

automata,  is the set of actions in which i specifies the set 

of actions can be taken by learning automata Ai, for each 

i, and W={w1,...,wn} is the set of weights such that wi 

(i{1, 2, …, n}) is the random weight associated with automata 

Ai. The action set of each learning automata vi equals to its 

adjacent vertices of vi. So the learning automaton assigned 

to each vertex vi of the stochastic graph, referred to as i, 

has ni=(di-1) actions such that i={1, …, i-1, i+1, …, 

ni}. To evaluate properly, At first , according to the central 

limit theorem each vertex is sampled 30 times, At each step 

of the algorithm, after sampling from some vertices and 

compute the expected weight of vertices, the candidate 

maximum clique is constructed by cooperation of learning 

automata. The learning automata iteratively construct the 

candidate maximum clique and update the action probability 

vectors until they find a near optimal solution to the 

maximum clique problem. The detail of the proposed 

algorithm is depicted as follow. 

In the initialization, a learning automaton Ai is assigned 

to each vertices vi of graph G and action probability vector 

of them are initialized equal by 1/di. Moreover, the 

candidate maximum clique consider as empty set (0={}). 

In the proposed algorithm, the following steps repeated 

until the stopping criteria are met. In this algorithm, the 

stopping criteria are considered as predefined total number 

of iterations and exceed the predefined threshold value of 

probability vector of the maximum clique as follows. 

t
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Where t denotes the set of vertices in the candidate 

maximum clique in the step t, p(vi) is the probability vector of 

the vi. 

1. All automata are activated and an automaton was 

selected randomly as Ai, and added into candidate 

maximum clique set afterward, all automata nonadjacent of 

Ai is deactivated. Now, automaton Ai chooses one of its 

actions according to its action probability vector, and 

deactivates nonadjacent automaton of Aj. Then, the new 

selected vertex (j) inserted in the candidate maximum 

clique set as t. This process repeated iteratively until there 

is no any active automaton. 

2. Weight of the candidate maximum clique (t) which 

constructed in the step of t is computed according to 

equation (6).  
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Where
iw(v ) and

 

tw( )  are the expected weight of vertex vi 

and the expected weight of clique t respectively. t 

specifies the vertex set of candidate maximum clique in the 

step of t and t denotes the cardinality of candidate 

maximum clique t. 

3. The candidate maximum clique, which obtained in the 

step of t in comparison with the best candidate maximum 

clique up to now is evaluated. If the cardinality of current 

candidate maximum clique is greater than the cardinality 

of the all candidate maximum clique that found until now, 

then all chosen learning automata are rewarded and 

candidate maximum clique was replaced by current 

maximum clique, otherwise the chosen learning automata 

are penalized. 

 

According to the description, the pseudo code of proposed 

algorithm is presented in the figure 1.  
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Proposed algorithm 
Input Stochastic Graph GV, E, F, Threshold probability P, Threshold iteration T 

Output The stochastic maximum clique 

Assumptions 

      Assign an automaton Ai to each vertex vi 

      Let t denotes the vertex set of candidate maximum clique at step t 

Begin 

      Let t denotes the step number and is initially set to 1 

      Let t denotes the dynamic probability thresholdat step t 

      t{} 

      *{} 

      While (t<T and t< P) Do 

            Enable all learning automata 

            Select a learning automaton randomly as Ai 

            tvi 

            While exist enabled LA Do  

                  Disable all its non-adjacent Ai 

                  Choose one of adjacent vertex of viby learning automaton Ai  

                  tt  +vj 

                  Enable Aj 

                  AiAj 

      End While       
If (ŵ(t)ŵ(*)) Then 

                 The chosen actions corresponding to edges of current maximum clique 

by all the learning automata are rewarded                   
* t 

      Else 

                 The chosen actions corresponding to edges of current maximum clique 

by all the learning automata are penalized       
End If       
Calculate t by equation (5) 

      tt +1 

      End While 

End Algorithm  

Figure 1: psoude code of proposed algorithm 

  The Best result for maximum clique in the stochastic graph 

obtained in the end of the algorithm. 

VI. Simulation Results 

A. Experimental Study 

To evaluate the performance of the proposed algorithm, 

experiments are accomplished on the following stochastic 

graphs, which details of them are listed in [27], and are 

demonstrated in figure 2. These graph models are social 

networks, which the weight of activity/availability of vertices 

to be random variables. Stochastic graph descriptions have 

been presented in table 1. 

Table 1: Stochastic graph description for experiments 

Graph name Vertices Edges Type 

Stnd-0.7-4-15-20 20 70 Social networks 

Stnd-0.8-4-15-30 30 102 Social networks 

Stnd-0.8-4-15-40 40 138 Social networks 

Stnd-0.8-4-15-50 50 247 Social networks 

Stnd-0.9-4-15-100 100 518 Social networks 

 

B. Experimental Results 

In all simulation presented in this paper, the number of 

samples taken by the proposed algorithm from the stochastic 

graph to construct the maximum clique is demonstrated. The 

updating scheme for action probability vectors of learning 

automata is linear reward-inaction (LR-I). The stopping 

criteria are set to pre-defined number of steps (40000) and 

threshold value of function on probability vector. The 

number of total samples taken, iterations of each confidence 

level and average clique weights of sampling are listed in 

table 2 to 16 for stochastic graphs.  

The results of proposed algorithm for averaged over 10 runs are 
presented. 

The simulation results in the tables of 2 and 6 have 

demonstrated the average total samples for the maximum clique 

by the proposed algorithm, the effect of learning parameter of 

learning automata and confidence level is evaluated. 

In another experiment, Average Iterations for stochastic 

graphs are presented in table 7 to 11, in these tables the effect 

of learning parameter of learning automata and confidence level 

are also listed. 

The final test, average clique weights of sampling is 

presented; they are demonstrated in table 12 to 16. 

According to evaluation results, the proposed algorithm is more 

inclined to maximum clique with a maximum average weight. 

In The first row of the tables shows the learning rate parameters 

and the first column describes the confidence levels 

(threshold).In these tables the effect of different values of 

learning parameter specifies the accuracy of algorithm with 

increasing the learning parameter in terms of average clique 

weight, average number of samples, and average iterations 

of algorithm. 

 

 

 
 

 

a) Stnd-0.7-4-15-20 b) Stnd-0.8-4-15-30 

 
 

 

c) Stnd-0.8-4-15-40 d) Stnd-0.8-4-15-50 

 
e) Stnd-0.9-4-15-100 

 

Figure 2: Stochastic graphs for experiments  
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Table 2: Average Total Samples of the proposed algorithm for Stnd-0.7-4-15-20 with different confidence level and different learning parameter 

Learning rate 

Confidence  
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 

0.40 758.8 679.9 651.8 639.5 630.6 630.2 625.1 623.9 621.2 616.6 

0.45 791.9 696.6 664.5 646.5 639.2 632.4 627.7 624.2 625.0 620.7 

0.50 831.6 714.8 675.2 659.3 648.4 640.5 632.7 629.0 628.4 630.4 

0.55 871.7 734.7 692.2 666.6 655.2 648.1 638.6 635.7 632.1 627.7 

0.60 920.4 759.3 708.0 679.6 664.2 651.2 648.8 642.2 635.5 632.9 

0.65 971.7 788.1 725.4 692.7 675.2 664.0 651.7 647.6 639.1 633.8 

0.70 1036.6 814.1 742.8 707.8 688.3 672.8 660.3 655.9 647.3 644.8 

0.75 1107.2 852.0 767.1 727.6 700.1 684.1 671.8 663.3 655.6 650.6 

0.80 1195.4 894.7 794.9 749.7 719.9 699.9 683.8 671.9 664.7 659.1 

0.85 1311.2 956.3 834.6 775.5 740.5 714.7 699.7 689.4 677.4 666.3 

0.90 1472.4 1035.1 888.0 815.8 771.9 744.2 724.8 707.5 696.1 684.7 
 

 

Table 3: Average Total Samples of the proposed algorithm for Stnd-0.8-4-15-30 with different confidence level and different learning parameter 

Learning rate 

Confidence 
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 

0.40 1186.5 1044.7 996.8 971.5 956.7 950.1 940.7 933.8 931.8 927.6 

0.45 1230.5 1067.6 1011.6 981.7 966.5 952.9 945.9 941.7 934.8 931.2 

0.50 1278.0 1086.5 1025.1 994.6 974.7 963.0 954.4 945.8 940.1 936.9 

0.55 1328.1 1114.0 1042.7 1006.9 984.5 968.7 960.6 951.5 944.5 943.0 

0.60 1382.4 1141.3 1059.7 1019.6 995.5 977.8 965.6 959.1 952.2 946.6 

0.65 1440.6 1171.7 1079.4 1035.8 1006.1 986.5 976.0 966.0 957.9 950.3 

0.70 1509.5 1201.9 1102.3 1052.3 1021.7 1000.2 986.3 973.3 966.7 958.7 

0.75 1591.9 1246.0 1128.1 1071.3 1036.3 1014.0 996.3 984.4 976.1 967.1 

0.80 1686.2 1292.3 1160.9 1093.6 1053.7 1029.0 1011.8 993.8 985.0 974.5 

0.85 1806.5 1352.9 1201.8 1124.5 1078.5 1048.5 1026.2 1010.0 996.6 985.6 

0.90 1968.9 1435.2 1255.0 1166.3 1110.5 1073.8 1050.0 1030.1 1013.6 1002.5 
 

 

Table 4: Average Total Samples of the proposed algorithm for Stnd-0.8-4-15-40 with different confidence level and different learning parameter 

Learning rate 

Confidence 
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 

0.40 1491.1 1345.7 1298.9 1270.8 1256.7 1248.3 1240.5 1234.0 1231.5 1228.3 

0.45 1538.3 1368.1 1312.3 1283.2 1266.0 1256.2 1245.0 1239.5 1236.3 1233.4 

0.50 1586.0 1396.2 1329.3 1297.6 1273.7 1262.5 1253.0 1247.0 1241.0 1237.7 

0.55 1631.7 1419.4 1343.2 1308.3 1288.4 1269.1 1259.5 1253.0 1247.3 1241.4 

0.60 1690.5 1444.3 1362.5 1322.2 1296.7 1278.9 1269.4 1257.9 1252.0 1246.8 

0.65 1748.8 1473.0 1382.9 1336.0 1306.7 1291.6 1275.3 1267.2 1258.0 1253.4 

0.70 1818.0 1510.7 1403.3 1354.5 1321.1 1301.0 1286.0 1275.4 1266.1 1257.7 

0.75 1900.6 1544.1 1431.7 1373.2 1336.9 1313.8 1296.0 1283.6 1274.4 1264.8 

0.80 1991.2 1594.1 1461.0 1393.1 1353.7 1329.4 1311.6 1295.1 1284.6 1274.5 

0.85 2110.3 1652.6 1502.2 1424.4 1378.2 1349.9 1327.1 1309.8 1298.7 1287.0 

0.90 2279.4 1733.9 1559.5 1464.9 1410.8 1375.1 1349.7 1329.7 1314.0 1301.8 
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Table 5: Average Total Samples of the proposed algorithm for Stnd-0.8-4-15-50 with different confidence level and different learning parameter 

Learning rate 

Confidence 
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 

0.40 1823.6 1661.0 1608.6 1580.6 1562.2 1552.9 1545.7 1539.6 1535.5 1530.2 

0.45 1864.6 1684.8 1623.3 1589.0 1571.9 1560.1 1550.7 1544.1 1537.3 1535.0 

0.50 1915.1 1705.8 1639.7 1601.5 1582.4 1567.9 1558.3 1550.4 1545.5 1538.9 

0.55 1963.5 1733.3 1652.4 1614.8 1590.3 1576.4 1564.0 1557.5 1549.5 1543.4 

0.60 2018.3 1756.7 1672.5 1630.3 1602.3 1584.2 1572.9 1563.7 1555.5 1549.4 

0.65 2079.8 1789.3 1690.4 1643.1 1614.4 1594.0 1580.2 1570.5 1561.7 1554.2 

0.70 2150.4 1819.8 1712.4 1657.9 1627.6 1606.2 1590.1 1579.5 1569.1 1562.2 

0.75 2227.4 1861.2 1740.8 1682.1 1643.6 1618.2 1600.2 1587.2 1577.7 1569.5 

0.80 2322.5 1907.9 1772.9 1702.5 1661.0 1635.8 1612.9 1599.4 1585.4 1577.6 

0.85 2441.2 1969.4 1813.4 1731.6 1685.4 1654.9 1631.1 1613.9 1600.4 1590.1 

0.90 2606.9 2050.3 1865.5 1773.5 1717.8 1680.0 1654.1 1634.0 1619.1 1607.0 
 

Table 6: Average Total Samples of the proposed algorithm for Stnd-0.9-4-15-100 with different confidence level and different learning parameter 

Learning rate 

Confidence 
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 

0.40 3316.3 3160.7 3103.6 3075.8 3061.2 3050.3 3043.3 3034.6 3033.3 3027.1 

0.45 3365.1 3178.3 3119.6 3088.1 3067.8 3056.4 3046.9 3040.9 3034.0 3029.7 

0.50 3411.0 3202.3 3132.4 3099.0 3079.8 3063.1 3054.2 3047.8 3040.3 3035.8 

0.55 3460.3 3228.5 3149.6 3112.4 3087.7 3071.7 3061.7 3052.1 3047.5 3043.1 

0.60 3514.1 3253.6 3166.5 3126.3 3099.8 3079.5 3070.5 3060.0 3051.4 3047.7 

0.65 3577.4 3286.0 3188.1 3138.8 3111.5 3091.7 3077.1 3066.6 3058.9 3052.0 

0.70 3642.7 3303.1 3209.1 3154.1 3123.8 3102.1 3086.0 3074.1 3067.9 3059.6 

0.75 3721.6 3357.4 3236.6 3176.2 3139.9 3114.1 3097.9 3082.4 3075.5 3066.4 

0.80 3742.3 3404.3 3269.0 3198.7 3156.9 3131.1 3110.2 3094.8 3083.1 3075.6 

0.85 3792.2 3464.1 3307.6 3228.8 3180.1 3150.7 3127.0 3109.5 3096.7 3088.7 

0.90 3751.2 3549.8 3361.2 3271.8 3215.3 3177.2 3150.9 3129.8 3115.1 3103.7 
 

Table 7: Average Iteration of the proposed algorithm for Stnd-0.7-4-15-20 with different confidence level and different learning parameter 

Learning rate 

Confidence 
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 

0.40 2402.3 1196.1 475.3 292.7 306.4 125.1 171.3 76.6 164.1 43.2 

0.45 2526.7 1181.2 891.6 441.3 298.4 236.5 250.0 149.0 340.4 99.1 

0.50 3413.8 1705.6 1218.1 683.1 607.9 553.2 299.5 138.6 146.3 137.4 

0.55 4425.8 1902.5 1481.9 903.2 683.0 524.4 341.5 265.8 221.0 210.6 

0.60 5197.1 2627.3 1720.8 1283.2 876.8 648.1 652.6 362.2 316.1 230.2 

0.65 6286.2 3381.6 2279.3 1341.3 1125.1 1061.9 670.6 617.7 564.6 284.6 

0.70 8105.7 3633.7 2796.7 1846.0 1232.5 897.2 774.5 596.2 494.7 411.8 

0.75 8437.8 4523.2 2587.1 1882.6 1493.5 998.5 1058.5 1437.7 984.4 887.9 

0.80 9922.3 5280.1 3417.2 2219.0 1991.8 1583.0 980.1 1415.4 753.9 677.7 

0.85 12823.3 6470.3 4882.4 2802.7 2223.7 1866.3 1359.5 1641.9 1367.2 894.3 

0.90 16927.5 7923.0 4761.2 3806.5 3122.1 2326.6 1971.7 1952.7 1470.4 1509.0 
 

Table 8: Average Iteration of the proposed algorithm for Stnd-0.8-4-15-30 with different confidence level and different learning parameter 

Learning rate 

Confidence 
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 

0.40 3265.6 1705.2 904.2 692.0 501.6 316.2 211.7 221.5 187.3 129.4 

0.45 3851.2 2024.2 1173.2 897.8 545.6 389.5 310.1 256.4 191.7 180.7 

0.50 4433.8 2234.4 1324.6 836.0 581.2 462.5 375.6 372.4 277.5 287.7 

0.55 5067.2 2248.9 1375.8 981.6 803.8 515.0 501.3 373.7 291.0 171.7 

0.60 5863.2 2710.9 1838.8 1087 769.2 575.1 640.0 457.1 292.3 266.3 

0.65 5878.9 2800.0 1591.5 1414.7 1067.0 761.1 540.1 577.4 510.5 261.2 

0.70 6710.5 2911.0 2062.3 1242.7 1148.1 800.2 633.6 800.1 488.1 418.0 

0.75 7090.3 3584.6 2224.4 1506.8 1241.8 1129.8 850.3 563.1 513.9 489.5 

0.80 8116.5 3666.6 2639.9 1691.3 1444 1189.5 920.6 705.8 747.7 558.2 

0.85 8956.5 4401.6 2830.2 2057.5 1409.3 1202.8 968.6 896.1 755.3 696.9 

0.90 10383.8 5086.5 3411.1 2335.9 1827.3 1689.1 1315.5 1180.5 811.2 745.4 
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Table 9: Average Iteration of the proposed algorithm for Stnd-0.8-4-15-40 with different confidence level and different learning parameter 

Learning rate 

Confidence 
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 

0.40 3747.2 1848.1 915.2 708.0 460.2 375.5 330.2 238.2 281.0 126.6 

0.45 3932.3 1981.2 1080.8 1037.5 533.5 410.3 399.5 277.0 211.1 318.2 

0.50 4498.3 2087.1 1414.5 922.0 732.0 525.2 417.3 339.2 294.2 238.9 

0.55 5594.3 2473.5 1465.5 894.1 1071.6 587.6 452.0 368.8 391.4 350.2 

0.60 5605.2 2982.6 1609.4 1245.5 1062.7 612.1 655.8 443.4 390.5 335.7 

0.65 6057.0 3078.5 2026.6 1577.5 1114.7 979.3 682.4 551.1 590.3 475.6 

0.70 7008.8 3477.0 2095.5 1523.0 1273.1 1049.4 985.2 675.8 512.5 480.3 

0.75 8087.6 3762.5 2401.3 1759.9 1164.9 1174.3 927.5 741.9 642.6 534.2 

0.80 9074.1 4343.1 2943.8 1978.9 1581.5 1253.6 1076.5 1031.8 810.5 650.1 

0.85 10295.9 5009.7 3250.7 2461.6 1595.7 1469.1 1159.7 1063.9 917.6 717.4 

0.90 11888.4 5756.9 3832.8 3039.3 2195.0 1761.5 1451.4 1214.2 1042.0 969.9 

 
Table 10: Average Iteration of the proposed algorithm for Stnd-0.8-4-15-50 with different confidence level and different learning parameter 

Learning rate 

Confidence 
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 

0.40 9051.5 3825.7 2551.4 1694.2 1661.1 682.3 722.7 636.9 491.3 262.6 

0.45 11558.7 5205.2 2731.6 1917.4 1486.3 1103.0 873.3 517.4 439.4 329.2 

0.50 11712.6 5203.5 3526.1 2080.5 1624.9 1270.1 1058.9 849.5 753.0 617.2 

0.55 12237.4 6114.3 4315.6 2556.2 2107.0 1677.9 1404.3 857.6 734.2 423.6 

0.60 14841.3 6279.9 4486.5 2843.6 2126.0 1629.2 1394.0 1119.1 1013.1 771.7 

0.65 15436.6 7320.1 4754.5 3240.4 2790.8 2295.2 1601.6 1271.7 1234.2 1031.9 

0.70 19821.9 8946.3 4657.1 3617.0 2734.3 2556.5 1918.9 2171.5 1196.4 1026.0 

0.75 21097.8 10053.0 6478.9 4167.8 3150.5 2961.5 1824.2 1726.7 1500.1 1483.0 

0.80 23132.2 10430.3 7339.6 4912.9 3582.7 3380.3 2429.7 2216.1 1730.7 1708.6 

0.85 23953.1 12626.5 7663.5 7271.5 4370.5 4266.4 2772.1 2108.1 2483.3 2039.6 

0.90 30673.1 15344.8 9271.5 6682.8 5262.7 4111.7 3865.6 3182.4 2717.1 2171.2 

 
Table 11: Average Iteration of the proposed algorithm for Stnd-0.9-4-15-100 with different confidence level and different learning parameter 

Learning rate 

Confidence 
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 

0.40 18040.4 7190.4 4591.2 3359.3 2345.7 1391.0 958.2 1064.4 704.7 474.6 

0.45 19421.9 9236.2 6048.3 3319.3 2692.5 2248.9 1759.7 1052.3 696.5 534.4 

0.50 21841.7 10957.0 5984.4 4099.8 3041.7 2382.4 2753.8 1198.4 1276.5 734.1 

0.55 25687.5 10823.7 6970.4 4987.2 3091.6 2581.0 2536.1 1400.5 1590.2 1019.0 

0.60 26440.9 11403.2 7484.6 5603.9 4091.8 2932.7 2584.6 1735.2 1424.2 1208.7 

0.65 28289.1 15433.3 9056.4 5564.4 4339.3 3047.5 2706.9 2431.5 2140.2 1739.6 

0.70 32470.4 18864.6 10242.3 6469.7 5130.5 3997.8 3561.7 3967.0 2692.5 2903.2 

0.75 34451.1 16816.4 10300.4 8076.3 5380.6 4565.0 4801.1 3123.1 3508.5 2014.7 

0.80 39731.7 20028.9 12822.7 9926.8 7574.6 5811.8 4541.0 3240.2 3113.7 2950.2 

0.85 40000+ 21629.7 13357.0 11011.9 7070.7 6693.3 5771.5 4350.5 3610.4 3201.4 

0.90 40000+ 25779.0 16185.1 13069.7 9367.4 7423.2 6713.1 5076.0 4737.4 3527.1 
 

 

Table 12: Average clique weight of the proposed algorithm for Stnd-0.7-4-15-20 with different confidence level and different learning parameter 

Learning rate 

Confidence 
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 

0.40 10.291 10.332 10.286 10.248 10.346 10.049 10.202 10.038 9.906 9.804 

0.45 10.300 10.295 10.408 10.318 10.355 10.322 10.190 10.177 10.233 10.091 

0.50 10.274 10.339 10.318 10.295 10.322 10.323 10.184 10.249 10.173 10.015 

0.55 10.270 10.302 10.317 10.304 10.290 10.311 10.260 10.238 10.249 10.291 

0.60 10.326 10.322 10.331 10.329 10.353 10.297 10.305 10.298 10.268 10.172 

0.65 10.269 10.342 10.296 10.336 10.291 10.290 10.306 10.372 10.251 10.282 

0.70 10.288 10.340 10.290 10.318 10.395 10.344 10.359 10.331 10.328 10.384 

0.75 10.361 10.314 10.348 10.332 10.266 10.326 10.323 10.250 10.305 10.299 

0.80 10.326 10.322 10.312 10.378 10.296 10.336 10.340 10.307 10.284 10.304 

0.85 10.331 10.348 10.303 10.337 10.344 10.322 10.292 10.300 10.295 10.240 

0.90 10.324 10.329 10.295 10.296 10.285 10.363 10.325 10.243 10.288 10.254 
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Table 13: Average clique weight of the proposed algorithm for Stnd-0.8-4-15-30 with different confidence level and different learning parameter 

Learning rate 

Confidence 
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 

0.40 10.695 10.730 10.782 10.690 10.828 10.781 10.837 10.990 10.529 10.522 

0.45 10.729 10.787 10.750 10.768 10.738 10.784 10.613 10.482 10.560 10.538 

0.50 10.778 10.817 10.797 10.906 10.818 10.705 10.609 10.781 10.776 10.793 

0.55 10.751 10.757 10.806 10.803 10.792 10.875 10.731 10.819 10.882 10.613 

0.60 10.826 10.739 10.625 10.851 10.661 10.700 10.898 10.617 10.702 10.750 

0.65 10.801 10.828 10.813 10.780 10.863 10.783 10.711 10.739 10.805 10.811 

0.70 10.772 10.745 10.780 10.678 10.735 10.755 10.773 10.849 10.789 10.813 

0.75 10.741 10.771 10.702 10.708 10.734 10.737 10.705 10.664 10.884 10.901 

0.80 10.740 10.709 10.778 10.726 10.817 10.817 10.825 10.780 10.696 10.726 

0.85 10.767 10.757 10.797 10.781 10.728 10.831 10.742 10.792 10.874 10.612 

0.90 10.774 10.820 10.731 10.736 10.812 10.687 10.709 10.777 10.701 10.775 
 

 

Table 14: Average clique weight of the proposed algorithm for Stnd-0.8-4-15-40 with different confidence level and different learning parameter 

Learning rate 

Confidence 
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 

0.40 10.014 10.005 10.023 10.001 10.013 9.984 10.030 10.007 9.992 10.215 

0.45 10.013 10.005 10.017 10.036 10.000 10.016 10.028 10.018 9.806 10.028 

0.50 10.003 10.004 10.004 10.019 10.022 10.014 10.009 9.847 10.009 10.000 

0.55 10.015 10.021 10.010 10.020 10.010 9.999 10.013 10.007 10.008 10.018 

0.60 10.021 10.001 10.030 10.024 10.019 10.009 10.017 10.021 10.011 10.032 

0.65 10.012 10.016 10.007 10.021 9.996 10.032 9.989 10.022 10.023 10.000 

0.70 10.018 10.023 10.012 10.024 10.019 10.033 10.028 10.032 10.000 10.036 

0.75 10.013 10.013 10.023 9.983 10.040 10.001 10.004 10.004 10.004 10.030 

0.80 10.015 10.006 10.020 10.001 9.996 10.040 10.007 10.005 10.023 9.971 

0.85 10.021 10.021 10.000 10.019 10.006 10.005 9.988 9.989 10.016 10.032 

0.90 10.006 10.017 10.024 10.026 10.004 9.972 10.009 9.989 10.001 10.004 
 

 

Table 15: Average clique weight of the proposed algorithm for Stnd-0.8-4-15-50 with different confidence level and different learning parameter 

Learning rate 

Confidence 
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 

0.40 10.491 10.533 10.528 10.425 10.583 10.492 10.415 10.494 10.277 10.188 

0.45 10.541 10.508 10.420 10.524 10.493 10.501 10.464 10.442 10.489 10.488 

0.50 10.469 10.526 10.387 10.451 10.459 10.497 10.421 10.373 10.559 10.584 

0.55 10.467 10.483 10.421 10.436 10.496 10.525 10.453 10.460 10.443 10.503 

0.60 10.549 10.436 10.522 10.533 10.496 10.455 10.507 10.545 10.496 10.502 

0.65 10.446 10.425 10.423 10.448 10.464 10.459 10.453 10.531 10.537 10.462 

0.70 10.462 10.441 10.419 10.424 10.478 10.464 10.545 10.472 10.431 10.635 

0.75 10.472 10.498 10.420 10.405 10.406 10.513 10.461 10.443 10.452 10.424 

0.80 10.450 10.507 10.470 10.510 10.519 10.497 10.596 10.547 10.504 10.560 

0.85 10.434 10.525 10.471 10.510 10.517 10.515 10.520 10.523 10.496 10.549 

0.90 10.502 10.423 10.463 10.507 10.477 10.539 10.512 10.495 10.502 10.593 
 

 

Table 16: Average clique weight of the proposed algorithm for Stnd-0.9-4-15-100 with different confidence level and different learning parameter 

Learning rate 

Confidence 
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 

0.40 9.216 9.230 9.150 9.202 9.211 9.218 9.235 9.199 8.977 9.414 

0.45 9.192 9.172 9.208 9.157 9.149 9.176 9.158 9.210 8.813 9.329 

0.50 9.249 9.182 9.204 9.218 9.217 9.274 9.201 9.205 9.179 9.158 

0.55 9.241 9.203 9.275 9.171 9.251 9.194 9.229 9.272 9.046 9.172 

0.60 9.203 9.146 9.196 9.181 9.156 9.151 9.196 9.218 9.115 9.142 

0.65 9.177 9.200 9.219 9.264 9.172 9.270 9.111 9.169 9.094 9.206 

0.70 9.193 9.188 9.139 9.219 9.191 9.215 9.241 9.151 9.185 9.148 

0.75 9.220 9.191 9.252 9.173 9.225 9.199 9.245 9.243 9.224 9.253 

0.80 9.199 9.160 9.221 9.203 9.187 9.205 9.209 9.254 9.243 9.232 

0.85 9.166 9.237 9.180 9.150 9.189 9.218 9.255 9.199 9.228 9.266 

0.90 9.204 9.199 9.170 9.214 9.228 9.168 9.149 9.259 9.225 9.125 
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VII. Conclusion 

In this paper, an algorithm based on learning automata 

algorithm is proposed to solve the maximum clique in a 

stochastic graph. Based on the application of real networks, it is 

assumed that the probability distribution of the vertex weight 

is unknown. Moreover, in this paper, the stochastic 

maximum clique was introduced. According to the 

simulation results, the number of samples taken by the 

proposed algorithm is less than the standard sampling method 

for constructing the maximum clique in stochastic graph.  
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