
International Journal of Computer Information Systems and Industrial Management Applications.

ISSN 2150-7988 Volume 6 (2014) pp. 484-493

© MIR Labs, www.mirlabs.net/ijcisim/index.html

Dynamic Publishers, Inc., USA

Distributed Learning Automata based Algorithm for

Solving Maximum Clique Problem in Stochastic

Graphs

Mohammad Soleimani-Pouri
1
, Alireza Rezvanian

2
 and Mohammad Reza Meybodi

3

1 Department of Electrical, Computer & Biomedical Engineering,

Qazvin branch, Islamic Azad University, Qazvin, Iran

m.soleimani@qiau.ac.ir

2 Soft Computing Laboratory, Computer Engineering & Information Technology Department,

Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran

a.rezvanian@aut.ac.ir

3 Soft Computing Laboratory, Computer Engineering & Information Technology Department,

Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran

mmeybodi@aut.ac.ir

Abstract: Many real world systems modeled as graph or

networks, which the characteristics of interaction between

vertices are stochastic and the probability distribution function

of the vertex weight is unknown. Finding the maximum clique

in a given graph is known as a NP-Hard problem, motivated by

the social networks analysis. The maximum clique of an

arbitrary graph G is the sub-graph C of G, Such that all

vertices in C are adjacent in G and have maximum cardinality.

In this paper an algorithm based on distributed learning

automata is presented to solve maximum clique problem in the

stochastic graph. Several experiments are designed to evaluate

the proposed algorithm. Experimental results indicate that the

proposed algorithm have a good performance in stochastic

graph.

Keywords: maximum clique problem, NP-Hard, stochastic graph,

learning automata, distributed learning automata, social networks.

I. Introduction

Let G=(V,E) be an undirected graph with vertex set V={1, 2,

…, n} and edge set EVV, A clique [1]–[4]of G is the set

of vertices CV, such that i,jE for all i,jC. A maximum

clique is a clique with maximum cardinality among all

cliques of G. Due to its numerous applications, the

maximum clique problem is one of the most important NP-

hard problems [5] and it has been extensively studied in the

literature such as clustering [6], [7] ,wireless sensor

networks [8], social network analysis [9], etc.

One of the most interests in the networks applications is

finding dense subsets of vertices such as clique, which

represents a group of entities or people, any two of which have

a certain type of relationship with each other in social

networks [10].

In all existing methods for solving maximum clique, it is

assumed that the graph is deterministic and thus the weight of

its vertices fixed. But in the real world application, this

assumption does not hold true, for example availability of

people as nodes in the social networks or activity of routers in

communication networks is varying over the time. So a

stochastic is proposed based on this idea [11], in this paper the

maximum clique problem in stochastic graphs is introduced,

and then a Distributed learning automata-based algorithm is

proposed for solving this problem, when the probability

distribution function of the weight of the vertices is unknown.

So far various methods have been proposed for this problem

Including methods based on ant colony [12], immune

genetic algorithm [13], reactive evolutionary algorithm[14],

branch-and-bound algorithm [15], [16], etc. All methods

presented cannot be used in new construction because they

can be used only for certain structures.

To evaluate the performance of the proposed algorithm,

the number of samples needs to be taken by it from the

vertices of the stochastic graph is compared to that of the

standard sampling method. According to the simulation

results the proposed algorithm in terms of the number of

samplings is acceptable. The rest of this paper is organized

as follows. In the section II, learning automata is

introduced. Distributed learning automata is described in

section III. In section IV, Structure of the stochastic graphs

are introduced. the proposed algorithm based on learning

automata for solving maximum clique in stochastic graph is

presented in section V. The performance of the proposed

algorithm is evaluated through the simulation in section VI.

Finally section VII concludes the paper.

Soleimani-Pouri et al.

485

II. Learning Automata

A learning automaton [11], [17]–[20] is an adaptive decision

making unit that improves its performance by learning how

choose the optimal action from a finite set of allowed actions

through repeated interactions with a random environment.

The action is chosen at random based on a probability

distribution kept over the action-set and at each instant the

given action is served as the input to the random

environment. The environment responds the taken action in

turn with a reinforcement signal. The action probability

vector is updated based on the reinforcement feedback from

the environment. The objective of a learning automaton is to

find the optimal action from the action-set so that the average

penalty received from the environment is minimized.

The environment can be described by a triple E{,,

c}, where {1, 2 , ..., r} represents the finite set of the

inputs, {1, 2, ..., m} denotes the set of the values can

be taken by the reinforcement signal, and c{c1, c2, ... , cr}

denotes the set of the penalty probabilities, where the

element ci is associated with the given action i. If the

penalty probabilities are constant, the random environment

is said to be a stationary random environment, and if they

vary with time, the environment is called a non-stationary

environment. The environments depending on the nature of

the reinforcement signal  can be classified into P-model,

Q-model, and S-model. The environments in which the

reinforcement signal can only take two binary values 0 and

1 are referred to as P-model environments. Another class of

the environment allows a finite number of the values in the

interval [0, 1] can be taken by the reinforcement signal.

Such an environment is referred to as Q-model

environment. In S-model environments, the reinforcement

signal lies in the interval [a, b].

Learning automata can be classified into two main

families: fixed structure learning automata and variable

structure learning automata. Variable structure learning

automata are represented by a triple <, , T>, where  is

the set of inputs, Q is the set of actions, and T is learning

algorithm. The learning algorithm is a recurrence relation

which is used to modify the action probability vector. Let

a(k) and p(k) denote the action chosen at instant k and the

action probability vector on which the chosen action is

based, respectively. The recurrence equation shown by (1)

and (2) is a linear learning algorithm by which the action

probability vector p is updated. Let i(k) be the action

chosen by the automaton at instant k.

ijjnpanp

npanpnp

jj

iii





 ,)()1()1(

)](1[)()1(
 (1)

When the taken action is rewarded by the environment (i.e.

(n)=0) and

ijjnpb
r

b
np

npbnp

jj

ii








 ,)()1(
1

)1(

)()1()1(

 (2)

When the taken action is penalized by the environment (i.e.

(n)=1). r is the number of actions which can be chosen by

the automaton, a(k) and b(k) denote the reward and penalty

parameters and determine the amount of increases and

decreases of the action probabilities, respectively. If a(k) =

b(k), the recurrence equations (1) and (2) are called linear

reward-penalty (LR-P) algorithm, if a(k)>>b(k) the given

equations are called linear reward--penalty (LR-P), and

finally if b(k) = 0 they are called linear reward-inaction (LR-

I). In the latter case, the action probability vectors remain

unchanged when the taken action is penalized by the

environment. In the multicast routing algorithm presented

in this paper, each learning automaton uses a linear reward-

inaction learning algorithm to update its action probability

vector.

III. Distributed Learning Automata

A Distributed learning automata (DLA) [21] is a network of

interconnected learning automata which collectively

cooperate to solve a particular problem with many

applications including: wireless Adhac networks[22] , data

mining[23] , etc.

The number of actions for a particular LA in DLA is

equal to the number of LA’s that are connected to this LA.

Selection of an action by a LA in the network activates one

LA corresponding to the action. Formally, a DLA can be

defined by a quadruple A, E, T, A0, where A={A1, A2, …,

An} is the set of learning automata, EAA is the set of the

edges in which edge ei,j corresponds to the action ij of the

automaton Ai, T is the set of learning schemes with which

the learning automata update their action probability

vectors, and A0 is the root automaton of DLA from which

the automaton activation is started.

The operation of a DLA can be described as follows: At

first, the root automaton randomly chooses one of its

outgoing edges (actions) according to its action probabilities

and activates the learning automaton at the other end of the

selected edge. The activated automaton also randomly

selects an action which results in activation of another

automaton. The process of choosing the actions and

activating the automata is continued until a leaf automaton

(an automaton which interacts with the environment) is

being reached. The chosen actions, along the path induced

by the activated automata between the root and leaf, are

applied to the random environment. The environment

evaluates the applied actions and emits a reinforcement

signal to the DLA. The activated learning automata along

the chosen path update their action probability vectors on

the basis of the reinforcement signal by using the learning

schemes. The paths from the unique root automaton to one

of the leaf automata are selected until the probability with

which one of the chosen paths is close enough to unity. Each

DLA has exactly one root automaton which is always

activated, and at least one leaf automaton which is activated

probabilistically. For example in the figure 3, every

automaton has two actions. If automaton A1 selects 3 from

its action set, then it will be activate automaton of A3.

Afterward, automaton of A3 will choose one of its possible

actions and so on.

IV. Stochastic Graph

As mentioned, in the most scenarios of network

applications, the weight of the vertices of graph is assumed

Distributed Learning Automata based Algorithm for Solving Maximum Clique Problem in Stochastic Graphs 486

to be fixed, but in real world applications this is not always

true and it varies with time. So we introduce stochastic

graph [24]–[26] for modeling the real networks

applications.

A stochastic graph G can be defined by a triple G = V, E,

F, where V = {v1, v2, ...,vn} denotes the set of vertices, E 

VV = {e1, e2, ..., em} is the edge set, and F={f1, f2, ..., fn} is

the probability distribution describing the statistics of vertex

weights. In particular, weight wi of vertex vi is assumed to

be positive random variable with fi as its probability density

function, which is supposed to be unknown for the proposed

algorithm. In stochastic graph G, an maximum clique iV

with weight of W(vi) vertices and expected weight of

iW() defined as ={1, 2, ..., r} the set of all its

maximum clique such that for all arbitrary vertices of

vi,vji, vi and vj are adjacent. The maximum clique is

defined as an clique with maximum expected weight. In

other word, stochastic maximum clique *
 specifies as follow

 
i

*

iarg max W()


 
 

 (3)

where
iW() is the expected weight of the clique i and

the defined as below

i i

i

v

i t

W(v)

W()









 (4)

Where
iW(v) denotes the expected weight of vertex vi.

Therefore, the stochastic maximum clique of a given

stochastic graph G is defined as the stochastic clique with

the maximum expected weight.

V. Proposed algorithm

In this section, the proposed algorithm based on Distributed

learning automata is described for solving the maximum

clique problem in stochastic graphs. In this paper, weight of

the vertices of the graph is assumed to be positive random

variables and the parameters of the underlying probability

distribution of the vertex weight are unknown. Therefore it

is required to estimate the parameters by a statistical

method. In the proposed algorithm, each vertices of graph,

equipped with a learning automaton, indeed, a network of

learning automata isomorphic to the stochastic graph. In

this case, the network of automata can be formulated by a

triple <A, , C>, where A denotes the set of the learning

automata,  is the set of actions in which i specifies the set

of actions can be taken by learning automata Ai, for each

i, and W={w1,...,wn} is the set of weights such that wi

(i{1, 2, …, n}) is the random weight associated with automata

Ai. The action set of each learning automata vi equals to its

adjacent vertices of vi. So the learning automaton assigned

to each vertex vi of the stochastic graph, referred to as i,

has ni=(di-1) actions such that i={1, …, i-1, i+1, …,

ni}. To evaluate properly, At first , according to the central

limit theorem each vertex is sampled 30 times, At each step

of the algorithm, after sampling from some vertices and

compute the expected weight of vertices, the candidate

maximum clique is constructed by cooperation of learning

automata. The learning automata iteratively construct the

candidate maximum clique and update the action probability

vectors until they find a near optimal solution to the

maximum clique problem. The detail of the proposed

algorithm is depicted as follow.

In the initialization, a learning automaton Ai is assigned

to each vertices vi of graph G and action probability vector

of them are initialized equal by 1/di. Moreover, the

candidate maximum clique consider as empty set (0={}).

In the proposed algorithm, the following steps repeated

until the stopping criteria are met. In this algorithm, the

stopping criteria are considered as predefined total number

of iterations and exceed the predefined threshold value of

probability vector of the maximum clique as follows.

t
i

t

i

v

P() p(v)







(5)

Where t denotes the set of vertices in the candidate

maximum clique in the step t, p(vi) is the probability vector of

the vi.

1. All automata are activated and an automaton was

selected randomly as Ai, and added into candidate

maximum clique set afterward, all automata nonadjacent of

Ai is deactivated. Now, automaton Ai chooses one of its

actions according to its action probability vector, and

deactivates nonadjacent automaton of Aj. Then, the new

selected vertex (j) inserted in the candidate maximum

clique set as t. This process repeated iteratively until there

is no any active automaton.

2. Weight of the candidate maximum clique (t) which

constructed in the step of t is computed according to

equation (6).

 
t

i

i

vt

t

w v

w()









 (6)

Where
iw(v) and

tw() are the expected weight of vertex vi

and the expected weight of clique t respectively. t

specifies the vertex set of candidate maximum clique in the

step of t and t denotes the cardinality of candidate

maximum clique t.

3. The candidate maximum clique, which obtained in the

step of t in comparison with the best candidate maximum

clique up to now is evaluated. If the cardinality of current

candidate maximum clique is greater than the cardinality

of the all candidate maximum clique that found until now,

then all chosen learning automata are rewarded and

candidate maximum clique was replaced by current

maximum clique, otherwise the chosen learning automata

are penalized.

According to the description, the pseudo code of proposed

algorithm is presented in the figure 1.

Soleimani-Pouri et al.

487

Proposed algorithm
Input Stochastic Graph GV, E, F, Threshold probability P, Threshold iteration T

Output The stochastic maximum clique

Assumptions

 Assign an automaton Ai to each vertex vi

 Let t denotes the vertex set of candidate maximum clique at step t

Begin

 Let t denotes the step number and is initially set to 1

 Let t denotes the dynamic probability thresholdat step t

 t{}

 *{}

 While (t<T and t< P) Do

 Enable all learning automata

 Select a learning automaton randomly as Ai

 tvi

 While exist enabled LA Do

 Disable all its non-adjacent Ai

 Choose one of adjacent vertex of viby learning automaton Ai

 tt +vj

 Enable Aj

 AiAj

 End While
If (ŵ(t)ŵ(*)) Then

 The chosen actions corresponding to edges of current maximum clique

by all the learning automata are rewarded
* t

 Else

 The chosen actions corresponding to edges of current maximum clique

by all the learning automata are penalized
End If
Calculate t by equation (5)

 tt +1

 End While

End Algorithm

Figure 1: psoude code of proposed algorithm

 The Best result for maximum clique in the stochastic graph

obtained in the end of the algorithm.

VI. Simulation Results

A. Experimental Study

To evaluate the performance of the proposed algorithm,

experiments are accomplished on the following stochastic

graphs, which details of them are listed in [27], and are

demonstrated in figure 2. These graph models are social

networks, which the weight of activity/availability of vertices

to be random variables. Stochastic graph descriptions have

been presented in table 1.

Table 1: Stochastic graph description for experiments

Graph name Vertices Edges Type

Stnd-0.7-4-15-20 20 70 Social networks

Stnd-0.8-4-15-30 30 102 Social networks

Stnd-0.8-4-15-40 40 138 Social networks

Stnd-0.8-4-15-50 50 247 Social networks

Stnd-0.9-4-15-100 100 518 Social networks

B. Experimental Results

In all simulation presented in this paper, the number of

samples taken by the proposed algorithm from the stochastic

graph to construct the maximum clique is demonstrated. The

updating scheme for action probability vectors of learning

automata is linear reward-inaction (LR-I). The stopping

criteria are set to pre-defined number of steps (40000) and

threshold value of function on probability vector. The

number of total samples taken, iterations of each confidence

level and average clique weights of sampling are listed in

table 2 to 16 for stochastic graphs.

The results of proposed algorithm for averaged over 10 runs are
presented.

The simulation results in the tables of 2 and 6 have

demonstrated the average total samples for the maximum clique

by the proposed algorithm, the effect of learning parameter of

learning automata and confidence level is evaluated.

In another experiment, Average Iterations for stochastic

graphs are presented in table 7 to 11, in these tables the effect

of learning parameter of learning automata and confidence level

are also listed.

The final test, average clique weights of sampling is

presented; they are demonstrated in table 12 to 16.

According to evaluation results, the proposed algorithm is more

inclined to maximum clique with a maximum average weight.

In The first row of the tables shows the learning rate parameters

and the first column describes the confidence levels

(threshold).In these tables the effect of different values of

learning parameter specifies the accuracy of algorithm with

increasing the learning parameter in terms of average clique

weight, average number of samples, and average iterations

of algorithm.

a) Stnd-0.7-4-15-20 b) Stnd-0.8-4-15-30

c) Stnd-0.8-4-15-40 d) Stnd-0.8-4-15-50

e) Stnd-0.9-4-15-100

Figure 2: Stochastic graphs for experiments

Distributed Learning Automata based Algorithm for Solving Maximum Clique Problem in Stochastic Graphs 488

Table 2: Average Total Samples of the proposed algorithm for Stnd-0.7-4-15-20 with different confidence level and different learning parameter

Learning rate

Confidence
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

0.40 758.8 679.9 651.8 639.5 630.6 630.2 625.1 623.9 621.2 616.6

0.45 791.9 696.6 664.5 646.5 639.2 632.4 627.7 624.2 625.0 620.7

0.50 831.6 714.8 675.2 659.3 648.4 640.5 632.7 629.0 628.4 630.4

0.55 871.7 734.7 692.2 666.6 655.2 648.1 638.6 635.7 632.1 627.7

0.60 920.4 759.3 708.0 679.6 664.2 651.2 648.8 642.2 635.5 632.9

0.65 971.7 788.1 725.4 692.7 675.2 664.0 651.7 647.6 639.1 633.8

0.70 1036.6 814.1 742.8 707.8 688.3 672.8 660.3 655.9 647.3 644.8

0.75 1107.2 852.0 767.1 727.6 700.1 684.1 671.8 663.3 655.6 650.6

0.80 1195.4 894.7 794.9 749.7 719.9 699.9 683.8 671.9 664.7 659.1

0.85 1311.2 956.3 834.6 775.5 740.5 714.7 699.7 689.4 677.4 666.3

0.90 1472.4 1035.1 888.0 815.8 771.9 744.2 724.8 707.5 696.1 684.7

Table 3: Average Total Samples of the proposed algorithm for Stnd-0.8-4-15-30 with different confidence level and different learning parameter

Learning rate

Confidence
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

0.40 1186.5 1044.7 996.8 971.5 956.7 950.1 940.7 933.8 931.8 927.6

0.45 1230.5 1067.6 1011.6 981.7 966.5 952.9 945.9 941.7 934.8 931.2

0.50 1278.0 1086.5 1025.1 994.6 974.7 963.0 954.4 945.8 940.1 936.9

0.55 1328.1 1114.0 1042.7 1006.9 984.5 968.7 960.6 951.5 944.5 943.0

0.60 1382.4 1141.3 1059.7 1019.6 995.5 977.8 965.6 959.1 952.2 946.6

0.65 1440.6 1171.7 1079.4 1035.8 1006.1 986.5 976.0 966.0 957.9 950.3

0.70 1509.5 1201.9 1102.3 1052.3 1021.7 1000.2 986.3 973.3 966.7 958.7

0.75 1591.9 1246.0 1128.1 1071.3 1036.3 1014.0 996.3 984.4 976.1 967.1

0.80 1686.2 1292.3 1160.9 1093.6 1053.7 1029.0 1011.8 993.8 985.0 974.5

0.85 1806.5 1352.9 1201.8 1124.5 1078.5 1048.5 1026.2 1010.0 996.6 985.6

0.90 1968.9 1435.2 1255.0 1166.3 1110.5 1073.8 1050.0 1030.1 1013.6 1002.5

Table 4: Average Total Samples of the proposed algorithm for Stnd-0.8-4-15-40 with different confidence level and different learning parameter

Learning rate

Confidence
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

0.40 1491.1 1345.7 1298.9 1270.8 1256.7 1248.3 1240.5 1234.0 1231.5 1228.3

0.45 1538.3 1368.1 1312.3 1283.2 1266.0 1256.2 1245.0 1239.5 1236.3 1233.4

0.50 1586.0 1396.2 1329.3 1297.6 1273.7 1262.5 1253.0 1247.0 1241.0 1237.7

0.55 1631.7 1419.4 1343.2 1308.3 1288.4 1269.1 1259.5 1253.0 1247.3 1241.4

0.60 1690.5 1444.3 1362.5 1322.2 1296.7 1278.9 1269.4 1257.9 1252.0 1246.8

0.65 1748.8 1473.0 1382.9 1336.0 1306.7 1291.6 1275.3 1267.2 1258.0 1253.4

0.70 1818.0 1510.7 1403.3 1354.5 1321.1 1301.0 1286.0 1275.4 1266.1 1257.7

0.75 1900.6 1544.1 1431.7 1373.2 1336.9 1313.8 1296.0 1283.6 1274.4 1264.8

0.80 1991.2 1594.1 1461.0 1393.1 1353.7 1329.4 1311.6 1295.1 1284.6 1274.5

0.85 2110.3 1652.6 1502.2 1424.4 1378.2 1349.9 1327.1 1309.8 1298.7 1287.0

0.90 2279.4 1733.9 1559.5 1464.9 1410.8 1375.1 1349.7 1329.7 1314.0 1301.8

Soleimani-Pouri et al.

489

Table 5: Average Total Samples of the proposed algorithm for Stnd-0.8-4-15-50 with different confidence level and different learning parameter

Learning rate

Confidence
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

0.40 1823.6 1661.0 1608.6 1580.6 1562.2 1552.9 1545.7 1539.6 1535.5 1530.2

0.45 1864.6 1684.8 1623.3 1589.0 1571.9 1560.1 1550.7 1544.1 1537.3 1535.0

0.50 1915.1 1705.8 1639.7 1601.5 1582.4 1567.9 1558.3 1550.4 1545.5 1538.9

0.55 1963.5 1733.3 1652.4 1614.8 1590.3 1576.4 1564.0 1557.5 1549.5 1543.4

0.60 2018.3 1756.7 1672.5 1630.3 1602.3 1584.2 1572.9 1563.7 1555.5 1549.4

0.65 2079.8 1789.3 1690.4 1643.1 1614.4 1594.0 1580.2 1570.5 1561.7 1554.2

0.70 2150.4 1819.8 1712.4 1657.9 1627.6 1606.2 1590.1 1579.5 1569.1 1562.2

0.75 2227.4 1861.2 1740.8 1682.1 1643.6 1618.2 1600.2 1587.2 1577.7 1569.5

0.80 2322.5 1907.9 1772.9 1702.5 1661.0 1635.8 1612.9 1599.4 1585.4 1577.6

0.85 2441.2 1969.4 1813.4 1731.6 1685.4 1654.9 1631.1 1613.9 1600.4 1590.1

0.90 2606.9 2050.3 1865.5 1773.5 1717.8 1680.0 1654.1 1634.0 1619.1 1607.0

Table 6: Average Total Samples of the proposed algorithm for Stnd-0.9-4-15-100 with different confidence level and different learning parameter

Learning rate

Confidence
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

0.40 3316.3 3160.7 3103.6 3075.8 3061.2 3050.3 3043.3 3034.6 3033.3 3027.1

0.45 3365.1 3178.3 3119.6 3088.1 3067.8 3056.4 3046.9 3040.9 3034.0 3029.7

0.50 3411.0 3202.3 3132.4 3099.0 3079.8 3063.1 3054.2 3047.8 3040.3 3035.8

0.55 3460.3 3228.5 3149.6 3112.4 3087.7 3071.7 3061.7 3052.1 3047.5 3043.1

0.60 3514.1 3253.6 3166.5 3126.3 3099.8 3079.5 3070.5 3060.0 3051.4 3047.7

0.65 3577.4 3286.0 3188.1 3138.8 3111.5 3091.7 3077.1 3066.6 3058.9 3052.0

0.70 3642.7 3303.1 3209.1 3154.1 3123.8 3102.1 3086.0 3074.1 3067.9 3059.6

0.75 3721.6 3357.4 3236.6 3176.2 3139.9 3114.1 3097.9 3082.4 3075.5 3066.4

0.80 3742.3 3404.3 3269.0 3198.7 3156.9 3131.1 3110.2 3094.8 3083.1 3075.6

0.85 3792.2 3464.1 3307.6 3228.8 3180.1 3150.7 3127.0 3109.5 3096.7 3088.7

0.90 3751.2 3549.8 3361.2 3271.8 3215.3 3177.2 3150.9 3129.8 3115.1 3103.7

Table 7: Average Iteration of the proposed algorithm for Stnd-0.7-4-15-20 with different confidence level and different learning parameter

Learning rate

Confidence
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

0.40 2402.3 1196.1 475.3 292.7 306.4 125.1 171.3 76.6 164.1 43.2

0.45 2526.7 1181.2 891.6 441.3 298.4 236.5 250.0 149.0 340.4 99.1

0.50 3413.8 1705.6 1218.1 683.1 607.9 553.2 299.5 138.6 146.3 137.4

0.55 4425.8 1902.5 1481.9 903.2 683.0 524.4 341.5 265.8 221.0 210.6

0.60 5197.1 2627.3 1720.8 1283.2 876.8 648.1 652.6 362.2 316.1 230.2

0.65 6286.2 3381.6 2279.3 1341.3 1125.1 1061.9 670.6 617.7 564.6 284.6

0.70 8105.7 3633.7 2796.7 1846.0 1232.5 897.2 774.5 596.2 494.7 411.8

0.75 8437.8 4523.2 2587.1 1882.6 1493.5 998.5 1058.5 1437.7 984.4 887.9

0.80 9922.3 5280.1 3417.2 2219.0 1991.8 1583.0 980.1 1415.4 753.9 677.7

0.85 12823.3 6470.3 4882.4 2802.7 2223.7 1866.3 1359.5 1641.9 1367.2 894.3

0.90 16927.5 7923.0 4761.2 3806.5 3122.1 2326.6 1971.7 1952.7 1470.4 1509.0

Table 8: Average Iteration of the proposed algorithm for Stnd-0.8-4-15-30 with different confidence level and different learning parameter

Learning rate

Confidence
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

0.40 3265.6 1705.2 904.2 692.0 501.6 316.2 211.7 221.5 187.3 129.4

0.45 3851.2 2024.2 1173.2 897.8 545.6 389.5 310.1 256.4 191.7 180.7

0.50 4433.8 2234.4 1324.6 836.0 581.2 462.5 375.6 372.4 277.5 287.7

0.55 5067.2 2248.9 1375.8 981.6 803.8 515.0 501.3 373.7 291.0 171.7

0.60 5863.2 2710.9 1838.8 1087 769.2 575.1 640.0 457.1 292.3 266.3

0.65 5878.9 2800.0 1591.5 1414.7 1067.0 761.1 540.1 577.4 510.5 261.2

0.70 6710.5 2911.0 2062.3 1242.7 1148.1 800.2 633.6 800.1 488.1 418.0

0.75 7090.3 3584.6 2224.4 1506.8 1241.8 1129.8 850.3 563.1 513.9 489.5

0.80 8116.5 3666.6 2639.9 1691.3 1444 1189.5 920.6 705.8 747.7 558.2

0.85 8956.5 4401.6 2830.2 2057.5 1409.3 1202.8 968.6 896.1 755.3 696.9

0.90 10383.8 5086.5 3411.1 2335.9 1827.3 1689.1 1315.5 1180.5 811.2 745.4

Distributed Learning Automata based Algorithm for Solving Maximum Clique Problem in Stochastic Graphs 490

Table 9: Average Iteration of the proposed algorithm for Stnd-0.8-4-15-40 with different confidence level and different learning parameter

Learning rate

Confidence
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

0.40 3747.2 1848.1 915.2 708.0 460.2 375.5 330.2 238.2 281.0 126.6

0.45 3932.3 1981.2 1080.8 1037.5 533.5 410.3 399.5 277.0 211.1 318.2

0.50 4498.3 2087.1 1414.5 922.0 732.0 525.2 417.3 339.2 294.2 238.9

0.55 5594.3 2473.5 1465.5 894.1 1071.6 587.6 452.0 368.8 391.4 350.2

0.60 5605.2 2982.6 1609.4 1245.5 1062.7 612.1 655.8 443.4 390.5 335.7

0.65 6057.0 3078.5 2026.6 1577.5 1114.7 979.3 682.4 551.1 590.3 475.6

0.70 7008.8 3477.0 2095.5 1523.0 1273.1 1049.4 985.2 675.8 512.5 480.3

0.75 8087.6 3762.5 2401.3 1759.9 1164.9 1174.3 927.5 741.9 642.6 534.2

0.80 9074.1 4343.1 2943.8 1978.9 1581.5 1253.6 1076.5 1031.8 810.5 650.1

0.85 10295.9 5009.7 3250.7 2461.6 1595.7 1469.1 1159.7 1063.9 917.6 717.4

0.90 11888.4 5756.9 3832.8 3039.3 2195.0 1761.5 1451.4 1214.2 1042.0 969.9

Table 10: Average Iteration of the proposed algorithm for Stnd-0.8-4-15-50 with different confidence level and different learning parameter

Learning rate

Confidence
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

0.40 9051.5 3825.7 2551.4 1694.2 1661.1 682.3 722.7 636.9 491.3 262.6

0.45 11558.7 5205.2 2731.6 1917.4 1486.3 1103.0 873.3 517.4 439.4 329.2

0.50 11712.6 5203.5 3526.1 2080.5 1624.9 1270.1 1058.9 849.5 753.0 617.2

0.55 12237.4 6114.3 4315.6 2556.2 2107.0 1677.9 1404.3 857.6 734.2 423.6

0.60 14841.3 6279.9 4486.5 2843.6 2126.0 1629.2 1394.0 1119.1 1013.1 771.7

0.65 15436.6 7320.1 4754.5 3240.4 2790.8 2295.2 1601.6 1271.7 1234.2 1031.9

0.70 19821.9 8946.3 4657.1 3617.0 2734.3 2556.5 1918.9 2171.5 1196.4 1026.0

0.75 21097.8 10053.0 6478.9 4167.8 3150.5 2961.5 1824.2 1726.7 1500.1 1483.0

0.80 23132.2 10430.3 7339.6 4912.9 3582.7 3380.3 2429.7 2216.1 1730.7 1708.6

0.85 23953.1 12626.5 7663.5 7271.5 4370.5 4266.4 2772.1 2108.1 2483.3 2039.6

0.90 30673.1 15344.8 9271.5 6682.8 5262.7 4111.7 3865.6 3182.4 2717.1 2171.2

Table 11: Average Iteration of the proposed algorithm for Stnd-0.9-4-15-100 with different confidence level and different learning parameter

Learning rate

Confidence
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

0.40 18040.4 7190.4 4591.2 3359.3 2345.7 1391.0 958.2 1064.4 704.7 474.6

0.45 19421.9 9236.2 6048.3 3319.3 2692.5 2248.9 1759.7 1052.3 696.5 534.4

0.50 21841.7 10957.0 5984.4 4099.8 3041.7 2382.4 2753.8 1198.4 1276.5 734.1

0.55 25687.5 10823.7 6970.4 4987.2 3091.6 2581.0 2536.1 1400.5 1590.2 1019.0

0.60 26440.9 11403.2 7484.6 5603.9 4091.8 2932.7 2584.6 1735.2 1424.2 1208.7

0.65 28289.1 15433.3 9056.4 5564.4 4339.3 3047.5 2706.9 2431.5 2140.2 1739.6

0.70 32470.4 18864.6 10242.3 6469.7 5130.5 3997.8 3561.7 3967.0 2692.5 2903.2

0.75 34451.1 16816.4 10300.4 8076.3 5380.6 4565.0 4801.1 3123.1 3508.5 2014.7

0.80 39731.7 20028.9 12822.7 9926.8 7574.6 5811.8 4541.0 3240.2 3113.7 2950.2

0.85 40000+ 21629.7 13357.0 11011.9 7070.7 6693.3 5771.5 4350.5 3610.4 3201.4

0.90 40000+ 25779.0 16185.1 13069.7 9367.4 7423.2 6713.1 5076.0 4737.4 3527.1

Table 12: Average clique weight of the proposed algorithm for Stnd-0.7-4-15-20 with different confidence level and different learning parameter

Learning rate

Confidence
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

0.40 10.291 10.332 10.286 10.248 10.346 10.049 10.202 10.038 9.906 9.804

0.45 10.300 10.295 10.408 10.318 10.355 10.322 10.190 10.177 10.233 10.091

0.50 10.274 10.339 10.318 10.295 10.322 10.323 10.184 10.249 10.173 10.015

0.55 10.270 10.302 10.317 10.304 10.290 10.311 10.260 10.238 10.249 10.291

0.60 10.326 10.322 10.331 10.329 10.353 10.297 10.305 10.298 10.268 10.172

0.65 10.269 10.342 10.296 10.336 10.291 10.290 10.306 10.372 10.251 10.282

0.70 10.288 10.340 10.290 10.318 10.395 10.344 10.359 10.331 10.328 10.384

0.75 10.361 10.314 10.348 10.332 10.266 10.326 10.323 10.250 10.305 10.299

0.80 10.326 10.322 10.312 10.378 10.296 10.336 10.340 10.307 10.284 10.304

0.85 10.331 10.348 10.303 10.337 10.344 10.322 10.292 10.300 10.295 10.240

0.90 10.324 10.329 10.295 10.296 10.285 10.363 10.325 10.243 10.288 10.254

Soleimani-Pouri et al.

491

Table 13: Average clique weight of the proposed algorithm for Stnd-0.8-4-15-30 with different confidence level and different learning parameter

Learning rate

Confidence
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

0.40 10.695 10.730 10.782 10.690 10.828 10.781 10.837 10.990 10.529 10.522

0.45 10.729 10.787 10.750 10.768 10.738 10.784 10.613 10.482 10.560 10.538

0.50 10.778 10.817 10.797 10.906 10.818 10.705 10.609 10.781 10.776 10.793

0.55 10.751 10.757 10.806 10.803 10.792 10.875 10.731 10.819 10.882 10.613

0.60 10.826 10.739 10.625 10.851 10.661 10.700 10.898 10.617 10.702 10.750

0.65 10.801 10.828 10.813 10.780 10.863 10.783 10.711 10.739 10.805 10.811

0.70 10.772 10.745 10.780 10.678 10.735 10.755 10.773 10.849 10.789 10.813

0.75 10.741 10.771 10.702 10.708 10.734 10.737 10.705 10.664 10.884 10.901

0.80 10.740 10.709 10.778 10.726 10.817 10.817 10.825 10.780 10.696 10.726

0.85 10.767 10.757 10.797 10.781 10.728 10.831 10.742 10.792 10.874 10.612

0.90 10.774 10.820 10.731 10.736 10.812 10.687 10.709 10.777 10.701 10.775

Table 14: Average clique weight of the proposed algorithm for Stnd-0.8-4-15-40 with different confidence level and different learning parameter

Learning rate

Confidence
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

0.40 10.014 10.005 10.023 10.001 10.013 9.984 10.030 10.007 9.992 10.215

0.45 10.013 10.005 10.017 10.036 10.000 10.016 10.028 10.018 9.806 10.028

0.50 10.003 10.004 10.004 10.019 10.022 10.014 10.009 9.847 10.009 10.000

0.55 10.015 10.021 10.010 10.020 10.010 9.999 10.013 10.007 10.008 10.018

0.60 10.021 10.001 10.030 10.024 10.019 10.009 10.017 10.021 10.011 10.032

0.65 10.012 10.016 10.007 10.021 9.996 10.032 9.989 10.022 10.023 10.000

0.70 10.018 10.023 10.012 10.024 10.019 10.033 10.028 10.032 10.000 10.036

0.75 10.013 10.013 10.023 9.983 10.040 10.001 10.004 10.004 10.004 10.030

0.80 10.015 10.006 10.020 10.001 9.996 10.040 10.007 10.005 10.023 9.971

0.85 10.021 10.021 10.000 10.019 10.006 10.005 9.988 9.989 10.016 10.032

0.90 10.006 10.017 10.024 10.026 10.004 9.972 10.009 9.989 10.001 10.004

Table 15: Average clique weight of the proposed algorithm for Stnd-0.8-4-15-50 with different confidence level and different learning parameter

Learning rate

Confidence
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

0.40 10.491 10.533 10.528 10.425 10.583 10.492 10.415 10.494 10.277 10.188

0.45 10.541 10.508 10.420 10.524 10.493 10.501 10.464 10.442 10.489 10.488

0.50 10.469 10.526 10.387 10.451 10.459 10.497 10.421 10.373 10.559 10.584

0.55 10.467 10.483 10.421 10.436 10.496 10.525 10.453 10.460 10.443 10.503

0.60 10.549 10.436 10.522 10.533 10.496 10.455 10.507 10.545 10.496 10.502

0.65 10.446 10.425 10.423 10.448 10.464 10.459 10.453 10.531 10.537 10.462

0.70 10.462 10.441 10.419 10.424 10.478 10.464 10.545 10.472 10.431 10.635

0.75 10.472 10.498 10.420 10.405 10.406 10.513 10.461 10.443 10.452 10.424

0.80 10.450 10.507 10.470 10.510 10.519 10.497 10.596 10.547 10.504 10.560

0.85 10.434 10.525 10.471 10.510 10.517 10.515 10.520 10.523 10.496 10.549

0.90 10.502 10.423 10.463 10.507 10.477 10.539 10.512 10.495 10.502 10.593

Table 16: Average clique weight of the proposed algorithm for Stnd-0.9-4-15-100 with different confidence level and different learning parameter

Learning rate

Confidence
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

0.40 9.216 9.230 9.150 9.202 9.211 9.218 9.235 9.199 8.977 9.414

0.45 9.192 9.172 9.208 9.157 9.149 9.176 9.158 9.210 8.813 9.329

0.50 9.249 9.182 9.204 9.218 9.217 9.274 9.201 9.205 9.179 9.158

0.55 9.241 9.203 9.275 9.171 9.251 9.194 9.229 9.272 9.046 9.172

0.60 9.203 9.146 9.196 9.181 9.156 9.151 9.196 9.218 9.115 9.142

0.65 9.177 9.200 9.219 9.264 9.172 9.270 9.111 9.169 9.094 9.206

0.70 9.193 9.188 9.139 9.219 9.191 9.215 9.241 9.151 9.185 9.148

0.75 9.220 9.191 9.252 9.173 9.225 9.199 9.245 9.243 9.224 9.253

0.80 9.199 9.160 9.221 9.203 9.187 9.205 9.209 9.254 9.243 9.232

0.85 9.166 9.237 9.180 9.150 9.189 9.218 9.255 9.199 9.228 9.266

0.90 9.204 9.199 9.170 9.214 9.228 9.168 9.149 9.259 9.225 9.125

Distributed Learning Automata based Algorithm for Solving Maximum Clique Problem in Stochastic Graphs 492

VII. Conclusion

In this paper, an algorithm based on learning automata

algorithm is proposed to solve the maximum clique in a

stochastic graph. Based on the application of real networks, it is

assumed that the probability distribution of the vertex weight

is unknown. Moreover, in this paper, the stochastic

maximum clique was introduced. According to the

simulation results, the number of samples taken by the

proposed algorithm is less than the standard sampling method

for constructing the maximum clique in stochastic graph.

References

[1] P. Martins, “Cliques with maximum/minimum edge

neighborhood and neighborhood density,” Computers

& Operations Research, vol. 39, no. 3, pp. 594–608,

2012.

[2] Q. Wu, J.-K. Hao, and F. Glover, “Multi-neighborhood

tabu search for the maximum weight clique problem,”

Annals of Operations Research, vol. 196, no. 1, pp.

611–634, 2012.

[3] D. Manrique, A. Rodríguez-Patón, and P. Sosík, “On

the scalability of biocomputing algorithms: The case of

the maximum clique problem,” Theoretical Computer

Science, vol. 412, no. 51, pp. 7075–7086, 2011.

[4] M. Brunato and R. Battiti, “R-EVO: A Reactive

Evolutionary Algorithm for the Maximum Clique

Problem,” IEEE Transactions on Evolutionary

Computation, vol. 15, no. 6, pp. 770 –782, 2011.

[5] R. M. Karp, “Reducibility among combinatorial

problems,” Complexity of Computer Computations,

vol. 40, no. 4, pp. 85–103, 1972.

[6] D. Duan, Y. Li, R. Li, and Z. Lu, “Incremental K-clique

clustering in dynamic social networks,” Artificial

Intelligence Review, vol. 38, no. 2, pp. 129–147, 2012.

[7] S. Mimaroglu and M. Yagci, “CLICOM: Cliques for

combining multiple clusterings,” Expert Systems With

Applications, vol. 39, no. 2, pp. 1889–1901, 2011.

[8] L. Wang, R. Wei, Y. Lin, and B. Wang, “A clique base

node scheduling method for wireless sensor networks,”

Journal of Network and Computer Applications, vol.

33, no. 4, pp. 383–396, Jul. 2010.

[9] J. Pattillo, N. Youssef, and S. Butenko, “Clique

Relaxation Models in Social Network Analysis,” in

Handbook of Optimization in Complex Networks, vol.

58, 2012, pp. 143–162.

[10] S. Wasserman, Social Network Analysis: Methods and

Applications. Cambridge University Press, 1994.

[11] M. Soleimani-Pouri, A. Rezvanian, and M. R.

Meybodi, “Solving maximum clique problem in

stochastic graphs using learning automata,” in 2012

Fourth International Conference on Computational

Aspects of Social Networks (CASoN),, 2012, pp.

115–119.

[12] C. Solnon and S. Fenet, “A study of ACO capabilities

for solving the maximum clique problem,” Journal of

Heuristics, vol. 12, no. 3, pp. 155–180, 2006.

[13] B.-D. Zhou, H.-L. Yao, M.-H. Shi, Q. Yue, and H.

Wang, “An new immune genetic algorithm based on

uniform design sampling,” Knowledge and

Information Systems, vol. 31, no. 2, pp. 389–403, 2012.

[14] R. Battiti and M. Protasi, “Reactive local search for the

maximum clique problem 1,” Algorithmica, vol. 29,

no. 4, pp. 610–637, 2001.

[15] E. Tomita and T. Kameda, “An efficient

branch-and-bound algorithm for finding a maximum

clique with computational experiments,” Journal of

Global Optimization, vol. 37, no. 1, pp. 95–111, 2007.

[16] J. Konc and D. Janezic, “An improved branch and

bound algorithm for the maximum clique problem,”

proteins, vol. 4, p. 5, 2007.

[17] K. S. Narendra and M. A. L. Thathachar, Learning

Automata: An Introduction. Printice-Hall, 1989.

[18] A. Rezvanian and M. R. Meybodi, “Tracking Extrema

in Dynamic Environments Using a Learning

Automata-Based Immune Algorithm,” in Grid and

Distributed Computing, Control and Automation, vol.

121, Springer Berlin Heidelberg, 2010, pp. 216–225.

[19] A. Rezvanian and M. R. Meybodi, “LACAIS: Learning

Automata based Cooperative Artificial Immune System

for Function Optimization,” in Contemporary

Computing, vol. 94, Springer Berlin Heidelberg, 2010,

pp. 64–75.

[20] A. Rezvanian and M. R. Meybodi, “An adaptive

mutation operator for artificial immune network using

learning automata in dynamic environments,” in

Proceedings of the 2010 Second World Congress on

Nature and Biologically Inspired Computing (NaBIC),

2010, pp. 479–483.

[21] H. Beigy and M. R. Meybodi, “Utilizing distributed

learning automata to solve stochastic shortest path

problems,” International Journal of Uncertainty

Fuzziness And Knowledge Based Systems, vol. 14, no.

5, p. 591, 2006.

[22] J. A. Torkestani and M. R. Meybodi, “An intelligent

backbone formation algorithm for wireless ad hoc

networks based on distributed learning automata,”

Computer Networks, vol. 54, no. 5, pp. 826–843, 2009.

[23] R. Forsati and M. R. Meybodi, “Effective page

recommendation algorithms based on distributed

learning automata and weighted association rules,”

Expert Systems with Applications, vol. 37, no. 2, pp.

1316–1330, 2010.

[24] J. Akbari Torkestani and M. R. Meybodi, “A learning

automata-based heuristic algorithm for solving the

minimum spanning tree problem in stochastic graphs,”

The Journal of Supercomputing, vol. 59, no. 2, pp.

1035–1054, 2012.

[25] J. Akbari Torkestani and M. R. Meybodi, “Finding

minimum weight connected dominating set in

stochastic graph based on learning automata,”

Information Sciences, vol. 200, no. 1, pp. 57–77, 2012.

[26] J. A. Torkestani and M. R. Meybodi, “Learning

automata-based algorithms for solving stochastic

minimum spanning tree problem,” Applied Soft

Computing, vol. 11, no. 6, pp. 4064–4077, 2011.

[27] “AUT Soft Computing Resources,” 2013. [Online].

Available: http://ceit.aut.ac.ir/softlab/Resources.html.

Soleimani-Pouri et al.

493

Author Biographies

Mohammad Soleimani-Pouri received his B.S.

degree in Computer Engineering (Software

Engineering) from Islamic Azad University of

Hamedan, Iran in 2010. Currently he is a M.S.

student in Computer Engineering (Artificial

Intelligence) at Department of Electrical, Computer

& Biomedical Engineering, Qazvin Branch,

Islamic Azad University, Qazvin, Iran. His research

interests cover Social network analysis, Complex

networks, Learning system and the related practical

application in Graph Theory.

Alireza Rezvanian received his B.Sc. degree in

Computer Engineering from Bu-Ali Sina

University of Hamedan, Iran in 2007 and his

masters in Computer Engineering from Islamic

Azad University of Qazvin in 2010. Currently he is

a Ph.D. student in Computer Engineering at the

Computer Engineering & Information Technology

Department, Amirkabir University of Technology

(Tehran Polytechnic), Tehran, Iran. His research

activities include soft computing, evolutionary

computation, complex networks, social networks,

signal processing, and learning systems.

Mohammad Reza Meybodi received the B.S.

and M.S. degrees in Economics from the Shahid

Beheshti University in Iran, in 1973 and 1977,

respectively. He also received the M.S. and Ph.D.

degrees from the Oklahoma University USA, in

1980 and 1983, respectively, in Computer Science.

Currently he is a Full Professor in Computer

Engineering Department, Amirkabir University of

Technology, Tehran, Iran. Prior to current

position, he worked from 1983 to 1985 as an

Assistant Professor at the Western Michigan

University, and from 1985 to 1991 as an Associate

Professor at the Ohio University, USA. His

research interests include, channel management in

cellular networks, learning systems, parallel

algorithms, soft computing and software

development.

