
International Journal of Computer Information Systems and Industrial Management Applications.

ISSN 2150-7988 Volume 6 (2014) pp. 571-581

© MIR Labs, www.mirlabs.net/ijcisim/index.html

Dynamic Publishers, Inc., USA

A Methodology for Designing Robust

Central/Self-Organising Multi-Agent Systems

Yaser Chaaban

Leibniz University of Hanover, Institute of Systems Engineering – System and Computer Architecture,

Appelstrasse 4, Hanover 30167, Germany

chaaban@sra.uni-hannover.de

Abstract: Organic Computing (OC) has the objective to use

principles that are detected in natural systems. Consequently,

OC tries to develop systems that are adaptive, flexible and

robust at the same time utilising advantage of the organic

properties of OC. In this regard, the robustness of OC systems

is a key property, because the environments of such systems are

dynamic. In this paper, we propose an interdisciplinary

methodology, “Robust Multi-Agent System” (RobustMAS) to

characterise robustness of multi-agent systems. RobustMAS

allows building robust multi-agent systems in presence of

disturbances using the OC concept. It uses a hybrid approach (a

combination of central and self-organising form) that is robust

enough against disturbances. In this way, RobustMAS

guarantees an acceptable system performance by limiting the

degradation of the performance in the presence of disturbances.

In other words, RobustMAS combines the use of a central

Observer/Controller (O/C) architecture, autonomous agents,

disturbances and deviations from the planned behaviour aiming

to solve coordination problems in multi-agent systems. In this

context, RobustMAS solves the conflict between a central

controller (i.g., a coordination algorithm) and the autonomy of

agents so that the system robustness can be achieved. More

accurately, RobustMAS introduces a hybrid coordination of a

multi-agent system. This hybrid coordination takes place in

three steps: path planning, observation, controlling.

Simultaneously, we introduce a metric for the quantitative

determination of the robustness.

Keywords: Organic Computing, Robustness, Hybrid

Coordination, Multi-Agent Systems.

I. Introduction

The Organic Computing Initiative [5] aims to build flexible,

adaptive, and robust systems. Thus, it investigates robustness

of distributed self-organising systems. This robustness

demonstrates a crucial property of OC systems. As a result,

robust systems have the capability to continue working in

spite of disturbances so that their major tasks can be carried

out.

Robustness of a system can be defined in very diverse ways

according to the context. Effective control mechanisms for

modern systems are desired in order to attain such systems

with a better performance and higher robustness. It is very

familiar that robustness will be considered with respect to

disturbances. The disturbances affect the robustness of the

system and may lead to the suspension of the system in the

worst case or may constrain, at least, the functionality of the

system (the system works but with a reduced degree of

robustness). Therefore, variations of the disturbance size are

needed in order to study the degree of the system robustness.

The disturbance size affects the length of the recovery phase

which is required by the system to work robustly again.

Briefly, if a system is provided with self-healing properties,

this system will be robust against failures or disturbances

which may occur.

Because environments of complex systems may change

dynamically, self-organising systems should be provided with

some degrees of autonomy so that they can adapt their

behaviour to new environmental situations. This autonomy as

well as disturbances and other reasons may cause an

unwanted emergent behaviour [6] or the whole system may

fail unexpectedly. Therefore, the system should be observed

(e.g., by an observer) and controlled (e.g., by a controller) so

that this emergent behaviour or the complete system failure

can be prevented. Consequently, the system performance

remains effective and will not deteriorate significantly or at

least the system will not fail completely.

The main point here is that using a fully centralised approach

to design systems is not sufficiently robust, because this

design form has a single point of failure. On the contrary, a

decentralised approach exhibits more robustness than a

centralised approach in many situations; however it often

requires overhead costs (e.g., a high overhead in terms of

communication). In accordance to this, a hybrid approach

including both centralised and decentralised elements will

provide a certain degree of robustness, which is one of the

main issues of this paper.

It is noteworthy that the definition of system robustness varies

according to the context in which the system is used.

Therefore, manifold meanings of system robustness were

introduced in literature. Additionally, various formal

measures and metrics were presented to achieve the system

robustness.

Although there are numerous research projects made towards

building robust multi-agent systems in diverse fields, a study

Chaaban 572

of robustness of technical systems, which are modelled as

multi-agent systems, does not exist yet (at least it is extremely

rare, e.g., an attempt by the Organic Computing Initiative

[5]).

This paper is organised as follows. Section 2 explains the

application scenario used in this work, a traffic intersection

without traffic lights. This scenario serves as a testbed for the

evaluation of the RobustMAS concept. Section 3 presents a

survey of related work concerning architectures applied to

various technical systems. In Section 4 the concept and

objectives of RobustMAS will be presented. Furthermore, the

problem domain, the components, the agent classes and the

proposed system architecture of RobustMAS will be studied.

Afterwards, the measurement of robustness of a multi-agent

system according to the RobustMAS concept will be discussed,

where a new method for their measurement has been

developed accordingly. Finally, Section 4 will summarise the

presented RobustMAS concept and gives a peek at future

trends.

II. AN APPLICATION SCENARIO FOR

ROBUSTMAS CONCEPT

This section describes the application scenario of the

RobustMAS concept, a traffic intersection without physical

traffic lights. In this scenario, autonomous vehicles attempt to

cross the intersection as fast as possible.

For this reason, an intersection control algorithm based on

virtual traffic lights is used. Such scenarios contain and

assemble the required concerns that can be used to build

robust multi-agent systems. In this context, autonomous

agents are autonomous vehicles, and the controller of the

intersection is the central unit. However, the basic idea of the

RobustMAS concept is applicable for other systems as well.

In this scenario, a resource sharing problem (resource sharing

conflict) arises, which has to be resolved in order to avoid

collisions within the intersection (a shared resource). Thus,

the coordination of autonomous vehicles is the problem of this

application scenario, which will be used later for the

evaluation of the RobustMAS concept. A trajectory-based

approach will be used where dynamic replanning of

trajectories will be investigated in the presence of

disturbances.

In this regard, a special problem domain of RobustMAS has

been defined making use of the traffic problem as an

application scenario for RobustMAS. This domain, which is

called "RobustMAS Traffic", deals with intersections of

autonomous vehicles in order to solve the traffic problem.

Similar to the RobustMAS concept, the terms of the special

application domain, RobustMAS Traffic, can be utilised. For

this purpose, the words agent, which is used in RobustMAS,

and vehicle, which is used in RobustMAS Traffic, can be used

interchangeably. Additionally, the term “shared

environment” in RobustMAS is used interchangeably for

“centre of the intersection” in RobustMAS Traffic.

In addition to that, the autonomous vehicles and the

environment, an intersection without traffic lights, should be

observed. This observation aims to detect deviations from

plan (trajectories of vehicles) or disturbances (accidents) that

may occur. Consequently, replanning and corrective

intervention will be directed, if necessary, toward replanning

(trajectories replanning) so that the system remains

demonstrating safety and robustness.

Figure 1 illustrates the form of the traffic intersection without

traffic lights. Here, the intersection was modelled as a

grid-based layout. Vehicles that are controlled by agents, try

to move through the intersection as quickly as possible.

Figure 1. The intersection without traffic lights “RobustMAS

Traffic”

Vehicles behave differently regarding their locations, outside

or inside the centre of the intersection (shared environment).

Vehicles, which are outside the shared environment, attempt

to move forward avoiding collisions (act in a fully

autonomous way). However, vehicles get collision-free

trajectories from the central controller of the intersection.

These planned trajectories are provided to vehicles as a

recommendation, so that every vehicle has its best possible

(desired from controller) path inside the centre of the

intersection. Therefore, autonomous vehicles either move

faster than their planned trajectories causing deviations from

the planned behaviour, or they follow them if deviations are

not possible. Here, it is worth mentioning the assumption that

the wishes for turning of vehicles are known.

In this application scenario, RobustMAS aims to develop a

robust traffic intersection, in the presence of accidents

(disturbances) in the intersection, and unplanned autonomous

behaviour of vehicles (deviations from planned trajectories).

In this regard, the robustness measurement is based on the

size of the accident (disturbance strength). Therefore, the

simulation has been carried out in the cases that the size of the

accident is 1, 2, and 4 (the accident occupies an area of size 1,

2 and 4 cells inside the intersection).

For generalisation of the RobustMAS concept, the current

scenario used in this work, intersections without traffic lights,

can be replaced also with the more general scenario, shared

spaces. Shared space is an approach, developed by Hans

Monderman [7]. This generalisation may be possible due to

the similarities between the working circumstances and the

environments presented in both systems. In this regard, both

systems can be considered as unregulated traffic space, where

vehicles move in a fully autonomous way without traffic

lights.

In previous papers, we introduced a system for coordinating

 A Methodology for Designing Robust Central/Self-Organising Multi-Agent Systems 573

vehicles at a traffic intersection using an o/c architecture

[1][2]. Additionally, handling of deviations from planned

(desired) behaviour was studied in [3], whereas handling of

disturbances (accidents) was considered in [4].

III. STATE OF THE ART

As mentioned above, in the literature, there are enormous

works concerning the robustness of systems. However, there

is a clear lack of study of robustness, to the best of our

knowledge, in developing robust multi-agent systems in

technical systems.

In the literature, diverse architectures were suggested in order

to be applied to various technical systems. Architectures for

technical systems are depending on specific requirements

using design principles and methodologies in order to achieve

desired goals, to solve specific problems, to create behaviour

patterns of the technical system applied to.

The Adaptive Agent Architecture (AAA) introduced in [8][9]

is a multi-agent system architecture that was developed on the

basis of the research in fault-tolerance and agent

communication languages. This architecture works closely

with the Open Agent Architecture. It was employed in

multi-agent systems like Quickset [9]. Additionally, it

depends on the teamwork-based approach, which is a

decentralised approach. Due to the fault-tolerant trait of

AAA-architecture, a robust multi-agent system can be

designed by means of this architecture.

The AAA architecture is not useful for RobustMAS, because

of its approach, which assumes that agents work as teams.

This approach does not comply with the RobustMAS concept,

which supposes that the agents are self-interested.

Other work relating to the architectures proposed in order to

solve collaborative or coordinate problems in multi-agent

systems can be summarised as follows:

 An application of the generic O/C architecture was

presented in [6]. This application was applied to swarm

robot scenarios, where the observer determines the

unwanted clustering behaviour of robots. However, this

application addresses only clustering behaviour, while

RobustMAS deals with disturbances and deviations from

plan (desired behaviour).

 A computational framework for the coordination of large

robot teams (at least 100 robots) was developed and

implemented in the CentiBOTS project [10]. As a result,

the CentiBOTS project does not deal with turbulent

environment (disturbances).

 A novel modelling methodology for distributed and

collectively intelligent systems was proposed in [11]. The

resultant methodology does not consider the system

robustness against disturbances.

 The Centre for Robot-Assisted Search and Rescue at the

University of South Florida has extended the Sensor

Fusion Effects (SFX) architecture that serves as the base

for the cognitive model of a team of robots. The aim of this

extension was to insert a distributed layer so that the

concept of a person from psychology can be mimicked.

This architecture is called the Distributed Field Robot

Architecture (DFRA) [12]. However, DFRA architecture

does not take into account the influence of disturbances on

system functionality, while RobustMAS tries to reduce the

effect of disturbances on system performance.

 A behavioural architecture for swarm robots was

suggested in [13]. This architecture is very effective for

self-assembling tasks (swarm of self-assembling robots).

In this architecture, the key role is played by the

interactions among agents, which are responsible for the

formation of the needed pattern. On the contrary,

RobustMAS uses a central component that performs the

desired behaviour (collision-free trajectories), where this

planned behaviour is given to agents only as a

recommendation.

 The Autonomic Nano-Technology Swarm (ANTS) is a

generic mission architecture introduced by NASA. The

goal of NASA is to utilise approaches of multi-agent

systems in space missions. The ANTS architecture is a

mission/system architecture that can be applied to robust,

scalable, highly distributed systems [14]. However, ANTS

architecture has no consideration for the system

robustness when disturbances occur in the environment.

 Different distribution possibilities of the generic O/C

architecture were investigated in [15]. The study aims to

create collaboration patterns in multi-agent systems using

the O/C architecture and to apply it to a traffic scenario.

Briefly, it can be seen that most system architectures

discussed above are focused on specific problems aiming to

solve them (collaborative or coordinate problems) in context

of multi-agent systems. However, the generic O/C

architecture presented in [6] introduces generic

methodologies and approaches, where the observation and

control of such systems will supply the desired results

avoiding unwanted behaviour of agents. In this regard,

RobustMAS uses an O/C architecture to observe autonomous

agents within a shared environment in order to detect

deviations (unplanned autonomous behaviours) from desired

behaviour. Additionally, RobustMAS intervenes when it is

necessary, so that the system maintains a desired level of

system performance in spite of disturbances in the

environment. Consequently, RobustMAS focuses on the

robustness of hybrid central/self-organising multi-agent

systems.

In previous paper [4], we focused the discussion of related

work on robust agent-based approaches used for fully

autonomous vehicles within an intersection without traffic

lights. In this context, a study of the impact of a multi-agent

intersection control protocol for fully autonomous vehicles on

driver safety is presented in [16]. In this study, the

simulations deal only with collisions in intersections of

autonomous vehicles aiming to minimise the losses and to

mitigate catastrophic events. However, it can be noted that the

study has not considered the robustness of the intersection

system.

Furthermore, we considered various methods for measuring

robustness [4]. To address this issue, some approaches were

introduced, among others, in [17][18][19]. Both approaches;

Chaaban 574

the FePIA procedure in [17] and the statistical approach in

[18] are general approaches and consequently can be adapted

to specific purposes (arbitrary environment). In both

approaches, diverse general metrics were used to quantify

robustness.

There is also much other related work that can be found in the

literature, e.g., on re-planning, plan repair, formal analysis of

protocols for emergent behaviours, and so on. Finally, sensor

networks can be considered as MAS and there is much

research published on robustness and fault-tolerance in sensor

networks (see [20] [21] for examples). Here, fault tolerance is

one of the critical issues in wireless sensor networks (WSNs).

IV. THE ROBUSTMAS APPROACH

The concept and objectives of RobustMAS will be presented

in the next sections. Additionally, the problem domain, the

components, the agent classes and the proposed system

architecture of RobustMAS will be clarified highlighting the

hybrid central/self-organising architecture as the key concept

of RobustMAS. Subsequently, the measurement of robustness

and gain of a multi-agent system according to the RobustMAS

concept will be presented in term of definition and

proposition of a new appropriate method for their

measurement.

As mentioned above, for the explanation of the RobustMAS

concept, the words agent and vehicle are used

interchangeably. Also, the term “shared environment” is used

interchangeably for “centre of the intersection”. Finally, the

term “disturbance” is used interchangeably for “accident”,

and the term “desired behaviour” for “planned trajectories”.

A. Robust system with disturbance

The RobustMAS concept introduces a robust hybrid

central/self-organising multi-agent system (hybrid

coordination) solving the conflict between a central planning

algorithm and the autonomy of the agents (decentral,

self-organised). Here, the autonomy of the agents is

recognised as a deviation from the plan of the central

algorithm, if the agents are not respecting this plan.

The application scenario used in this work is an intersection

without traffic lights, where vehicles are modelled as

autonomous (semi-autonomous) agents (Driver Agents) with

limited local capabilities. The vehicles are trying as quickly

as possible to cross the intersection without traffic lights. In

the meantime, an interaction between decentralised

mechanisms (autonomous vehicles) and centralised

interventions arises. Here, the goal is to build a robust

intersection without traffic lights when disturbances (e.g.,

accidents) and deviations (e.g., unplanned autonomous

behaviour) occur.

Moreover, RobustMAS addresses a further problem that

occurs in the system wherever multiple agents (e.g., robots,

vehicles, etc.) move in a common environment. This problem

is called resource sharing conflict (Resource Allocation

Problem). This problem raises the question: “How can agents

of a system move reliably in their environment?”.

RobustMAS uses coordination mechanisms (a manager is

responsible for coordinating tasks) to solve the resource

sharing conflict. These coordination mechanisms are based

on the idea of path planning, which must be performed taking

into consideration other agents (vehicles) and the geometry of

the environment (intersection). The path planning is

performed in a 3-dimensional space with two geometrical

dimensions (x, y) representing the intersection and time t.

For the path planning, RobustMAS uses an adapted A*-

algorithm to calculate collision-free trajectories (central

planning) for all agents in a shared environment (the centre of

the intersection) enabling them to avoid collisions. This path

planning (collision-free trajectories) is given to agents as a

recommendation.

Since the agents are autonomous (decentral, self-organised)

and thus deviations from the plan (trajectories) in principle

are possible, RobustMAS performs an observation of

compliance with these trajectories (e.g., by an observer).

RobustMAS aims to make the system capable to return to its

normal state with minimal central planning intervention after

disturbances occur (e.g., by a controller).

Robust systems should be fault-tolerant in order to deal with

faults, deviations or disturbances and to continue working

effectively and fulfilling their major tasks. In the context of

this work, fault tolerance avoids system failures in the

presence of deviations and disturbances that occur in the

system allowing the agents of the system to move reliably in

their environment.

In order to conceive the basic idea of RobustMAS, three cases

of the system operation will be considered:

1. Operation without disturbance.

2. Operation with disturbance without intervention.

3. Operation with disturbance with intelligent

intervention.

Figure 2 illustrates the main idea of this concept in

establishing a robust system that tolerates faults, disturbances

and deviations which could be occurred in the system.

Figure 2. Robust system with disturbance occurrence

As depicted in Figure 2, the performance (e.g., throughput) of

the system is at its best (i.e., equal to 1) when no disturbances

occur. When a disturbance occurs, the system performance

would begin to fall and probably it would become worse

(deteriorate) over time, if no corrective intervention is taken

in due time. In contrast, if the corrective intervention is

intelligent and fast enough, the system performance should

improve in the course of time when a disturbance occurs. This

means that the system performance remains acceptable

despite the occurrence of disturbance.

 A Methodology for Designing Robust Central/Self-Organising Multi-Agent Systems 575

B. Goals (contributions) of RobustMAS

The main contribution of this work is the integration of

concepts from different research areas into a practically

applicable methodology. Figure 3 summarises the

methodologies integrated within RobustMAS.

Figure 3. The methodologies integrated within (RobustMAS)

The main goal of the new concept (RobustMAS) is to solve

the conflict between a central planning algorithm and the

autonomy of the agents using a hybrid form of a

central/self-organising solution of the coordination problem

for multi-agent systems. This approach:

 Keeps a multi-agent system at a desired performance level

when disturbances and deviations occur.

 Coordinates autonomous/semi-autonomous agents.

 Recognises the autonomy of the agents as a deviation from

the plan.

 Tolerates that some agents behave in a fully autonomous

way.

 Tolerates that some autonomous agents leave the control

of the fully central architecture.

 Forms a hybrid central/self-organising architecture for a

multi-agent system, which is a special form of the fully

central architecture.

 Deals with turbulent environment (disturbances).

 Has the goal to develop a robust multi-agent system

despite disturbances and deviations in the system (internal)

or in the environment (external).

A key point in the work is the coordination of autonomous

vehicles. This is the central component of the application

example, a traffic intersection without traffic lights, which

will be used for the evaluation.

Furthermore, RobustMAS establishes a robust traffic

intersection without traffic lights. Here, the deviations will be

first detected by the observer, so that the controller could

intervene in time, if needed, in order to guarantee the

robustness of the intersection. A disturbance is, for example,

an accident in the intersection; and a deviation is, for example,

an unplanned autonomous behaviour of a vehicle.

In addition, RobustMAS solves a coordination problem by a

central algorithm (a central-planning algorithm), using an

adapted A*- algorithm that was used for path planning. Here,

the path planning is considered as a resource allocation

problem (resource sharing problem) where multiple agents

move in a shared environment and need to avoid collisions.

For evaluation, it is necessary to determine the degree of the

system robustness using a suitable metric, which quantifies

this robustness.

C. Hybrid central/self-organising concept for multi-agent

systems

In this work, the term “hybrid central/self-organising

multi-agent system” is introduced. It is a new possibility of

the distribution of the proposed architecture.

Figure 4 shows the main idea of this hybrid

central/self-organising concept derived from the fully central

architecture.

Figure 4. The hybrid central/self-organising concept

(a) Fully central architecture: One O/C for the whole

system under observation and control.

(b) Hybrid central/self-organising concept: One O/C for the

whole system under observation and control, but the

autonomous agents can leave the control of the fully central

architecture to behave in a fully autonomous way (but still

under observation).

The hybrid central/self-organising concept aims to increase

the autonomy of agents compared to the central architecture.

This means, the hybrid concept tolerates that some agents

behave autonomously. It solves the conflict between a central

planning algorithm (a component in the controller) and the

autonomy of the agents (the entities of the system under

observation and control). The autonomy of the agents is

recognised as a deviation from the plan of the central

algorithm, if the agents are not respecting this plan.

Figure 5 shows the general flow plan proposed by

RobustMAS to solve the conflict between a central planning

algorithm and the autonomy of the agents. A central planning

algorithm generates a plan for every agent in the system.

Since the agents are autonomous and they behave in a

completely autonomous way, they may not obey this central

plan. If they comply with the central plan then the system

works effectively as planned (no deviations from plan).

However, if they do not comply with the central plan then

RobustMAS detects this deviations from the plan (e.g., by an

observer) in order to arrange an appropriate corrective

intervention (e.g., by a controller). It makes also replanning,

if necessary, with respect to the new situation.

Chaaban 576

Figure 5. The conflict between a central planning algorithm

and the autonomy of the agents (The general flow plan

proposed by RobustMAS solving the conflict)

Consequently, RobustMAS comprises the use of a central O/C

architecture, autonomous agents and deviations from a

central plan in order to solve coordination problems in

multi-agent systems. Additionally, it keeps the system at a

desired performance level (via replanning and corrective

intervention of the controller) when deviations and

disturbances occur in the system behaviour, so that the agents

of a system can move reliably in their environment.

D. Life cycle of RobustMAS

As mentioned above, the general problem domain of

RobustMAS is the resource allocation problem (resource

sharing problem) which occurs in the system wherever

multiple agents move in a common environment. This section

presents the proposed solution to cope with this problem.

RobustMAS uses coordination mechanisms to solve the

resource sharing problem. These coordination mechanisms

are based on the idea of path planning, which must be

performed taking into consideration other agents and the

geometry of the shared environment in the configuration

space-time (x, y, t). Here, the path planning is considered as a

resource allocation problem (resource sharing problem).

Since the goal of RobustMAS is to keep a multi-agent system

at a desired performance level when disturbances and

deviations occur in the system behaviour, agents have to be

observed (through the observer) within the shared

environment. This will be made to intervene (through the

controller) in time when it is necessary so that the system

remains demonstrating robustness and safety properties. The

paradigm of the proposed solution consisting in an

Observer/Controller architecture can be seen in Figure 6.

Figure 6. The paradigm of the proposed solution consisting

in an Observer/Controller architecture

This Figure depicts a hybrid coordination scheme of a

multi-agent system. It takes place in three steps:

1. Path planning: The agents send requests to the

controller, which computes collision-free trajectories

and arranges the participants. This means that the first

step is a central planning of the trajectories without

deviations of the agents. The agents get their planned

trajectories only as recommendation from the

controller. Autonomous behaviour of the agents means

that they either obey the plan or deviate from it or the

agents are completely outside of the plan.

2. Observation: The observation of actual trajectories of

agents in the shared environment is done by an

observer component in order to identify eventual

deviations from the plan, using the memory of all

planned trajectories. The observer informs the

controller about its observation.

3. Controlling: The controller carries out a replanning

for the trajectories of the affected agents, if needed, in

order to accomplish an appropriate corrective

intervention. The controller uses a decision

mechanism to take a decision how it could intervene

most suitably.

E. Agent classes

In this section, the agent classes created in order to be used by

RobustMAS will be described.

Each agent class represents a specialised role that can be

performed by the agents of this class in run time. Each class

has certain capabilities in order to interact with other agent

classes, which should take into account the whole goal of the

desired system.

RobustMAS implements agent classes allowing the agents to

play their roles. Based on the type of their class that they

belong to, the agents try to maximise:

 Class 1: Only their own fitness (e.g., their own utility),

which can be achieved by travelling across the

environment as quickly as possible, i.e., minimisation of

their individual travel times of agents across the

environment, or

 Class 2: Only the fitness of the whole system (the system

throughput), or

 Class 3: Their own fitness and then the fitness of the

whole system respectively in every step.

 A Methodology for Designing Robust Central/Self-Organising Multi-Agent Systems 577

These agents are either Non-Autonomous Agents (NAA) or

Autonomous Agents (AA).

 A = {NAA, AA} (1)

In turn, Autonomous Agents (AA) are either Autonomous

and Rational Agents (ARA) or Autonomous and

Non-Rational Agents (ANRA).

 AA = {ARA, ANRA} (2)

In this regard, “rational” means “reasonable autonomy”, i.e.,

agents are aware of their capabilities to make a rational choice

of an action that is reasonable to maximise their own utility.

However, and simultaneously, these agents follow safety rules

carefully, so that they do not cause resource sharing conflicts

(efficiently aware of their environment).

As a result, these agents by RobustMAS are generally

classified as follows:

 Class 1: Autonomous and Non-Rational Agents (ANRA):

They deviate from the plan and cause disturbances. These

agents are competitive. They try to maximise only their

own fitness (e.g., their own utility) and they do not

consider the fitness of the whole system (e.g., the system

throughput). However, they do not agree to the allocated

resources and they cause possibly a resource sharing

conflicts with other agents, because of their

non-rationality.

 Class 2: Non-Autonomous Agents (NAA): They do not

deviate from the plan and do not cause disturbances.

These agents are cooperative. They try indirectly to

maximise the fitness of the whole system (e.g., the system

throughput) and they agree to the allocated resources.

That means they do not cause resource sharing conflicts.

 Class 3: Autonomous and Rational Agents (ARA): They

deviate from the plan, but do not cause disturbances.

These agents are cooperative and competitive at the same

time. They try to maximise their own fitness (e.g., their

own utility) and then the fitness of the whole system (e.g.,

the system throughput). However, they do not agree to the

allocated resources, but they do not cause resource sharing

conflicts, because of their rationality.

F. System architecture

This section gives an overview of the proposed system

architecture and how to implement it on a highly relevant

technical problem: the control of autonomous agents moving

in a shared environment demonstrating a robust multi-agent

system. Additionally, it describes the adaptation of this

architecture to the traffic intersection without traffic lights.

Figure 7 shows the detailed internals of the RobustMAS

architecture. The system under observation and control is

considered as a set of elements possessing certain attributes in

terms of multi-agent systems. This system under observation

and control contains all agents that move within the shared

environment avoiding collisions. The agents outside the

shared environment send messages (requests) to the

controller which replies with collision-free planned

trajectories for all agents (path planning unit).

Figure 7. Detailed RobustMAS system architecture

Every agent by itself is assumed to be egoistic (class 1 and 3

agents), because it is autonomous and tries to quickly cross

the shared environment so that it may not obey its planned

trajectory. Therefore competition situations arise due to the

egoistic behaviour (competition-based behaviour) of agents,

which in turn leads to congestions, where agents with

different moving directions block each other in the common

environment. These congestions may cause a large cluster of

blocked agents for a long time.

The observer reads the planned trajectory of an agent from the

trajectory memory (memory of trajectories unit TM) only

when this agent is located within the shared environment and

compares it with the agent’s actual travelled trajectory using

the deviation detector (deviation detector unit DD) to identify

all deviations from the planned trajectories. The observer uses

also the collision detector (collision detector unit CD) to

detect whether a deviation led to a collision and to detect the

deviation class (see below). Afterwards, it aggregates

(aggregator unit) its observations as a vector of situation

parameters (situation descriptor unit SD). These parameters

are then sent to the controller. The controller has to intervene

on time if necessary (decision maker unit DM) and to select

the best corrective action (it makes a decision whether a

replanning is required and uses also the path planning unit PP

if needed) that corresponds to the current situation so that the

system performance remains acceptable and the target

performance of the system is maintained. The intervention of

the controller (the decision of the decision maker) will be

done with respect to the goal given by the user.

G. Definition of deviation and disturbance in RobustMAS

Since the definition of deviation and disturbance varies

according to the context condition, it is necessary to define

both terms clearly in the context of this work.

According to the RobustMAS concept, the deviation and the

disturbance can be defined as follows:

Definition 1: “A deviation is a different behaviour or path

or plan from what was initially planned (desired or expected)

for an agent. In other words, a deviation is an unplanned

autonomous behaviour. Deviations from the plan of the

central planning algorithm occur, if the agents are not

respecting this plan”.

Chaaban 578

Definition 2: “A disturbance is a permanent change in

environmental conditions, which leads to an unwanted

evident change in the target performance of the system.

Moreover, disturbances are obstacles (blocked surfaces,

restricted areas, or any additional difficulty) in the way of the

agents. These obstacles block agents in the neighbourhood

causing longer delays than planned”.

Additionally, the disturbance strength can be defined

according to the RobustMAS concept as follows:

Definition 3: “A disturbance strength is a positive constant

defining the strength (size) of the disturbance”.

H. Measurement of robustness and gain

Since RobustMAS aims to keep a multi-agent system at a

desired performance level even though disturbances and

deviations occur in the system, a method to measure the

robustness of a multi-agent system is required. The equivalent

goal of RobustMAS by the application scenario, a traffic

intersection without traffic lights, is to keep the traffic

intersection at a desired performance level even though

deviations from the planned trajectories and accidents occur

in the intersection. Therefore, a new concept will be

introduced in order to define the robustness of multi-agent

systems. Additionally, the gain of RobustMAS will be defined

and used to show the benefit of the hybrid

central/self-organising concept.

The robustness of a multi-agent system can be defined as

follows:

Definition 4: Robustness:

“A (multi-agent) system is considered robust against

disturbances if its performance degradation is kept at a

minimum”.

Consequently, the RobustMAS concept assumes that a robust

system keeps its performance acceptable after occurrence of

disturbances and deviations from the plan.

Definition 5: Relative robustness:

“The relative robustness of a (multi-agent) system in the

presence of a disturbance is the ratio of the performance

degradation due to the disturbance divided by the undisturbed

performance”.

In order to measure the robustness of RobustMAS in the

traffic intersection system, the throughput metric is used for

determining the reduction of the performance (system

throughput) of RobustMAS after disturbances (accidents) and

deviations from the planned trajectories. That is because

throughput is one of the most commonly used performance

metrics. Therefore, the comparison of the throughput values

is required in the three cases:

(1) Without disturbance.

(2) With disturbance with intervention.

(3) With disturbance without intervention.

Based on this, the robustness measurement of RobustMAS

can be considered in two ways:

 Using cumulative system performance, i.e., cumulative

throughput (#Agents), where the system is considered

only until the time when the disturbance ends. We

introduced this way of robustness measurement in [4].

 Using system performance, i.e., throughput per time unit

(#Agents/sec), where the system is considered until the

time when the system returns after disturbances to its

normal state like before.

For this explanation of the robustness measurement, the

words agent and vehicle can be used interchangeably.

I. Measuring robustness using system performance

(throughput per time unit):

In this case, the system performance, i.e., throughput per time

unit (#Agents/sec) is used. Additionally, the system is

considered longer than in the case of the cumulative

performance (cumulative throughput) values. Therefore,

compared to that case that defines time t1, the occurrence time

of disturbance, and time t2, the end time of disturbance, the

times t3 and t4 will also be defined. Here, t3 is the time at

which the system returns to its normal state with minimal

central planning intervention, while t4 is the time at which the

system returns to its normal state without central planning

intervention. In this regard, the normal state represents the

system performance level at its best when no disturbances

occur (under normal operating conditions). Here, we use the

following functions:

 P0 (t): represents the system performance when no

disturbances occur (normal state).

 Pd, ni (t): represents the system performance with a

disturbance with no intervention by the central planning.

 Pd, i (t): represents the system performance with a

disturbance with an intervention of the central planning.

Figure 8 shows the performance (throughput per time unit)

values of the system before and after the disturbance until the

time when the system returns to its normal state like before

comparing the three mentioned cases.

Figure 8. Comparison of system performance (throughput

per time unit) for three situations

In accordance with the definition 5 mentioned above, the

relative robustness (R) of a system (S) is determined as

follows:

10;
)()(

)()(

4

1

0

4

1

,






R
tdtP

tdtP
R

t

t

t

t

id

 (3)

Here, the lower and upper boundaries can be set as follows:

 R = 0 represents the lower boundary case of the relative

robustness, where the system is considered as non-robust

against disturbances (very poor performance). It appears

 A Methodology for Designing Robust Central/Self-Organising Multi-Agent Systems 579

when Pd, i (t) << P0 (t), i.e., the performance degradation

is very strong due to the disturbance in spite of the

intervention, compared to the performance when no

disturbance occurs. Thus, the system behaviour is not

acceptable in the face of disturbances.

 R = 1 represents the upper boundary case of the relative

robustness, where the system is considered as strongly

robust against disturbances (an optimal performance, an

ideal behaviour). It occurs, when Pd, i (t) = P0 (t), i.e., there

is no performance degradation due to the intervention

despite the presence of disturbances.

Furthermore, the system could be also weakly robust if its

performance level is acceptable but not optimal in the

presence of disturbances. Therefore, the system behaviour is

acceptable but not ideal.

The gain of a system is determined as the difference between

the performance in both cases, disturbances with and without

intervention:

)(#)(#)(niAgentsiAgentsniiGain 

 
4

1

,,)()]()([
t

t

nidid tdtPtP
(4)

Consequently, the loss of a system is determined as the

difference between the performance in both cases, no

disturbance and disturbances with intervention:

 
4

1

,0)()]()([
t

t

id tdtPtPLoss (5)

The discussion of the robustness measurement using the

system throughput metric will be based on the parameter

disturbance strength (see the definition above). In the traffic

scenario, the disturbance strength represents the size of the

accident in the traffic intersection. Accordingly, the

robustness measurement was repeated in the cases that the

disturbance strength is 1, 2, and 4. That means, the accident

occupies an area of size 1, 2 and 4 cells in the traffic

intersection as depicted in Figure 9.

V. SUMMARY AND FUTURE WORK

The Organic Computing (OC) initiative [5] aims to build

robust, flexible and adaptive technical systems. Future

systems shall behave appropriately according to situational

needs. But this is not guaranteed in novel systems, which are

complex and act in dynamically changing environments.

Therefore, the robustness of OC systems is a key property.

Figure 9. The disturbance strength (the accident size) in three

cases: 1, 2, and 4 cells in the traffic intersection

The focus of the interdisciplinary methodology, RobustMAS,

is to investigate the robustness of coordination mechanisms

for multi-agent systems in the context of OC. RobustMAS

poses a challenge to support the multi-agent system with

mechanisms to keep the system at a desired performance level

when disturbances and deviations from plan occur

(robustness). Furthermore, RobustMAS proposes a new

appropriate method to measure the robustness of such

multi-agent systems.

This work discussed the RobustMAS methodology, followed

by a detailed explanation of concept, objectives, agent classes

and the proposed architecture and its components. The

resulting concept allows building robust multi-agent systems

in presence of disturbances.

RobustMAS represents a robust hybrid

central/self-organising multi-agent system, in which the

conflict between centralised interventions (central planning,

a coordination algorithm) and the autonomy of the agents

(decentralised mechanisms, autonomous vehicles) was

solved.

Furthermore, this work presented the general problem

domain of RobustMAS, the resource sharing problem

(resource allocation problem), followed by the proposed

solution to cope with it. This problem appears in a

multi-agent system wherever multiple agents move in a

shared environment. In this context, agents struggle to get

resources (the shared environment) in order to move over it

quickly. Therefore, RobustMAS provides a coordination

mechanism to prevent a potential resource sharing conflict.

This mechanism uses a concept of path planning so that the

required resource allocation is planned over time.

Accordingly, the resource allocation is made by a central

controller, while the agents employ these resources. The

resource planning is done in the configuration space-time (x,

y, t), so that the agents can move reliably in their

environment.

On the other hand, this work proposed “RobustMAS Traffic”

as a special problem domain of the RobustMAS concept.

“RobustMAS Traffic” focuses on the traffic problem in an

intersection without physical traffic lights. Here, vehicles are

modelled as autonomous (semi-autonomous) agents with

limited local capabilities. These vehicles try as quickly as

Chaaban 580

possible to cross the intersection. “RobustMAS Traffic” aims

to design a robust traffic intersection in the presence of

disturbances (e.g., accidents) and deviations (e.g., unplanned

autonomous behaviour). Nonetheless, the concept of

RobustMAS is applicable for other systems too.

Finally, the measurement of robustness and gain of a

multi-agent system was presented in this work. Subsequently,

a method to measure robustness and gain of multi-agent

systems was proposed.

In this paper, we presented the RobustMAS concept.

Therefore, the next step is to continue with explanation of the

realisation of this concept investigating which techniques can

be applied to accomplish the three steps of the RobustMAS

concept: path planning, observation, and controlling.

Additionally, one aspect that may be of interest for future

work is the coordination and cooperation of multiple

intersections without traffic lights.

References

[1] Y. Chaaban, J. Hähner, and C. Müller-Schloer,

“Towards fault-tolerant robust self-organizing

multi-agent systems in intersections without traffic

lights”. In Proceedings of The First International

Conference on Advanced Cognitive Technologies and

Applications (Cognitive09), pp. 467-475, November

2009, Greece. IEEE.

[2] Y. Chaaban, J. Hähner, and C. Müller-Schloer,

“Towards Robust Hybrid Central/Self-organizing

Multi-agent Systems”. In Proceedings of the Second

International Conference on Agents and Artificial

Intelligence (ICAART2010), Volume 2 , pp. 341-346,

January 2010, Spain.

[3] Y. Chaaban, J. Hähner, and C. Müller-Schloer,

“Handling of Deviations from Desired Behaviour in

Hybrid Central/Self-Organising Multi-Agent Systems”.

In Proceedings of the Fourth International Conference

on Advanced Cognitive Technologies and Applications

(Cognitive12), pp. 122-128, July 2012, France.

[4] Y. Chaaban, J. Hähner, and C. Müller-Schloer,

“Measuring Robustness in Hybrid

Central/Self-Organising Multi-Agent Systems”. In

Proceedings of the Fourth International Conference on

Advanced Cognitive Technologies & Applications

(Cognitive12), pp. 133-138, July 2012, France.

[5] CAS-wiki: Organic Computing,

http://wiki.cas-group.net/index.php?title=Organic_Co

mputing, [retrieved: January, 2013].

[6] M. Mnif, U. Richter, J. Branke, H. Schmeck, and C.

Müller-Schloer, “Measurement and Control of

Self-organised Behaviour in Robot Swarms”.

Proceedings of the International Conference on

Architecture of Computing Systems (ARCS 2007), pp.

209-223, 2007.

[7] Wikipedia: Shared space,

http://en.wikipedia.org/wiki/Shared_space, [retrieved:

January, 2013].

[8] S. Kumar and P. R. Cohen, “Towards a Fault-Tolerant

Multi-Agent System Architecture”. In Proceedings of

the fourth international conference on Autonomous

agents, pp. 459-466, 2000. ACM Press publisher.

[9] S. Kumar, P. R. Cohen, and H. J. Levesque, “The

Adaptive Agent Architecture: Achieving

Fault-Tolerance Using Persistent Broker Teams”. In

Proceedings of the Fourth International Conference on

Multi-Agent Systems (ICMAS-2000), Boston MA, USA,

July 7-12, 2000.

[10] K. Konolige , C. Ortiz , R. Vincent , A. Agno , B.

Limketkai , M. Lewis , L. Briesemeister , D. Fox , J. Ko ,

B. Stewart , and L. Guibas, "CENTIBOTS Large Scale

Robot Teams". Artificial Intelligence Center, SRI

International, Menlo Park, CA 2003.

[11] N. Correll and A. Martinoli, "Collective inspection of

regular structures using a swarm of miniature robots". In

Proc. of the Int. Symp. on Experimental Robotics (ISER).

Singapore: Springer Tracts for Advanced Robotics

(STAR), Vol. 21, pp. 375-385, June 2006.

[12] M. Long, A. Gage, R. Murphy, and K. Valavanis,

"Application of the distributed field robot architecture to

a simulated demining task". In Proc. IEEE ICRA,

Barcelona, Spain, pp. 3193-3200, Apr. 2005.

[13] V. Trianni, Th.H. Labella, R. Gross, E. Sahin, M. Dorigo

and J.-L. Deneubourg, “Modeling Pattern Formation in

a Swarm of Self-Assembling Robots”. Technical Report

TR/IRIDIA/2002-12, IRIDIA, Université Libre de

Bruxelles, Bruxelles, Belgium, May 2002.

[14] S. A. Curtis, M. L. Rilee, W. Truszkowski, and P. E.

Clark, "ANTS for the Human Exploration and

Development of Space". In Proceedings of the IEEE

2003 Aerospace Conference, Volume 1, pp. 1-7, March

2003.

[15] E. Cakar, J. Hähner, and C. Müller-Schloer, “Creating

collaboration patterns in multi-agent systems with

generic observer/controller architectures”. In

Proceedings of the 2nd International Conference on

Autonomic Computing and Communication Systems

(Autonomics 2008), pp. 1-9, ICST, Brussels, Belgium,

2008.

[16] K. Dresner and P. Stone, “Mitigating catastrophic failure

at intersections of autonomous vehicles”. In

Proceedings of the 7th international joint conference on

Autonomous agents and multiagent systems (AAMAS

2008), pp. 1393–1396, Richland, SC, 2008.

[17] V. Shestak, H. J. Siegel, A. A. Maciejewski, and S. Ali,

“The robustness of resource allocations in parallel and

distributed computing systems”. In Proceedings of the

International Conference on Architecture of Computing

Systems (ARCS 2006), pp. 17–30, 2006.

[18] D. England, J. Weissman, and J. Sadagopan, “A new

metric for robustness with application to job scheduling”.

In IEEE International Symposium on High Performance

Distributed Computing 2005 (HPDC-14), Research

Triangle Park, NC, July 24-27, 2005.

[19] K. Waldschmidt and M. Damm, “Robustness in SOC

Design”. In Proceedings of the 9th EUROMICRO

Conference on Digital System Design: Architectures,

Methods and Tools (DSD 2006), Volume: Issue: , 0-0,

pp. 27-36, 2006.

[20] M. Effatparvar, Y. Matinfard, M. Hosseinzadeh, and M.

Dehghan, “Energy Aware Hybrid PUSH-PULL with

 A Methodology for Designing Robust Central/Self-Organising Multi-Agent Systems 581

Fault Tolerant Approach in Sensor Networks”

International Journal of Computer Information Systems

and Industrial Management Applications (IJCISIM), vol.

4, pp. 522–529, 2012.

[21] A. Mahapatro and P. M. Khilar, “Fault Diagnosis in

Body Sensor Networks” International Journal of

Computer Information Systems and Industrial

Management Applications (IJCISIM), vol. 5, pp.

252–259, 2013.

Author Biographies

Yaser Chaaban was born in 1974 in Aleppo (Syria). He received the B.Sc.

degree in computer engineering from the Aleppo University in 1998, and the

M.Sc. in computer engineering from the Leibniz University Hannover (LUH),

Germany, in 2005. In 2013 he received the Dr.-Ing. degree from the Faculty of

Electrical Engineering and Computer Science of the Leibniz University

Hannover, Germany. He worked in the area of control management in

distributed multi-agent systems. His research focuses on robustness and

coordination in the field of organic computing. After gaining experience as an

academic researcher at the Institute of Systems Engineering at the Department of

System and Computer Architecture at the LUH he is now working as assistant

lecturer at the Studienkolleg of the Leibniz University Hannover.

