
International Journal of Computer Information Systems and Industrial Management Applications.

ISSN 2150-7988 Volume 6 (2014) pp.77 - 88

© MIR Labs,www.mirlabs.net/ijcisim/index.html

Dynamic Publishers, Inc., USA

Towards the Improvement of

Cuckoo Search Algorithm

Ms. Hetal R. Soneji
1
andMr. Rajesh C. Sanghvi

2

Department of Mathematics
G. H. Patel College of Engineering & Technology

VallabhVidyanagar, India-388 120

sonejihetu@gmail.com1

rajeshsanghvi@gcet.ac.in2

Abstract—Cuckoo search algorithm via Lévy flights by Xin-She

Yang and Saush Deb [1] for optimizing a nonlinear function uses

generation of random numbers with symmetric Lévy distribution

obtained by Mantegna’s algorithm. However, instead of using the

original algorithm, itssimplified version is used to generate Lévy

flights during the Cuckoo Search algorithm [2].A paper by

MatteoLeccardi [3] describes three algorithms,namely,

Mantegna’s algorithm, rejection algorithmand McCulloch’s

algorithm to generate such random numbers and claims

thatMcCulloch’s algorithm outperforms the other two. The idea

in this paper is to compare the performance of Mantegna’s

algorithm, its simplified version, and McCulloch’s algorithm

when each of them is incorporated in Cuckoo search algorithm to

generate Lévy flights [4].Moreover, a term similar to the Local

Best component of PSO is added in updating the population while

implementing the CS algorithm using simplified version of

Mantegna’s algorithm and the results are analyzed. Some other

implementation oriented changes are also incorporated and their

effect is studied.

Keywords-Cuckoo search,Lévy flights, Optimization,Random

number generation, Mantegna’s algorithm, McCulloch’s algorithm,
Modified Cuckoo Search Algorithm.

I. Introduction

During last few years, many nature inspired evolutionary
algorithms have been developed for optimization. These
algorithms work on the basis of random search in some suitable
search region depending on the problem. Though it is a random
search, it is not truly random because there is a mechanism in
the algorithm which guides the search in such a manner that the
solution vector gets improved step by step. Two crucial
characteristics of these modern meta-heuristics are
intensification (exploitation) and diversification (exploration).
Intensification intends to search around the current best
solutions, while diversification tries to explore the search space
efficiently so that the algorithm does not get stuck into local
optimum. Such algorithms have become quite popular and
helping due to their efficiency in terms of robustness, accuracy,
speed and simple implementation. But at the same time, they
have some drawbacks like, one particular algorithm may be
efficient for a specific class of optimization problems but may

not be so efficient for some other class of optimization
problems or sometimes they get stuck into local optimum.

One of such nature inspired algorithms is Cuckoo Search

algorithm (CS). The algorithm was developed by Xin-She

Yang and Suash Deb in 2009 [1]. It was inspired by obligate
brood parasitism of some cuckoo species by laying their eggs

in to the nest of host birds. Those female parasitic cuckoos can

imitate the colors and pattern of the eggs of the host species.

So there are fewer chances that the host bird may identify and

destroy the eggs. But, by chance, if the host bird discovers that

the eggs are different, it will either destroy the eggs or may

destroy the nest completely and build a new nest at different

place. The timing of egg-laying of some species is also

amazing. The parasitic cuckoo often chooses a host nest where

the eggs are just laid. In general, the cuckoo eggs are hatched

little earlier than the host eggs. As soon as the first cuckoo
chick is hatched, it starts throwing out the host eggs blindly out

of the nest sothat it can increase the share of its food provided

by the host bird.

The animals search for food in random manner. Their

search path is made up of step by step random walk or flight

which is based on the current location and the transition

probability to the next location. Various studies show that the

flight behavior of animals or birds has typical characteristics of

Lévy flight. Lévy flight is a random walk where the step size is

distributed according to the heavy tailed distribution. After a

large number of steps, the distance from the origin of the flight

tends to a stable distribution.
The CS algorithm has been modified by involving the

information exchange between top eggs, or the best solutions, a

concept similar to elitism in GA [5]. Its modified version is

also hybridized with Conjugate Gradient Method to train

Multi-Layer Perceptrons in [6]. It is applied for optimum

design of spaces trusses [7] and for the selection of optimal

machining parameters in milling operations [8]. The fact that,

if a cuckoo’s egg is very similar to a host’s egg then it is less

likely to be discovered, is used to modify the random walk in

the algorithm in somewhat biased way [9]. It is also improved

by varying its parameters relative to the generation number

78 Soneji and Sanghvi

[10] and it is applied to train feedforward neural networks to

classify the iris and breast cancer data sets [11].Anew search

strategy based on orthogonal learning strategy to enhance the

exploitation ability of the basic cuckoo search algorithm is
presented in [12].Orthogonal design is used to produce all

possible combinations of levels for a complete factorial

experiment. The basic idea of orthogonal design is to utilize

the properties of the fractional experiment for the efficient

determination of the best combination of levels. Experimental

results by the CS algorithm with this new search strategy are

concluded as better than or at least comparable with the

existing quality results. The algorithmic concepts of the CS,

PSO, DE and ABC algorithms have been analyzed in

[13].TheEmpirical results in this paper reveal that the problem

solving CS algorithm is close to DE algorithm and the CS and

DE algorithms supply more robust and precise results than the
PSO and ABC algorithms.

Various applications of cuckoo search algorithm and some

other optimization algorithms are presented by many

researchers. In [14]an attempt is made to develop an artificial

neural network (ANN) based model for CO2 laser cutting of

stainless steel. The laser cutting experiment is planned and

conducted according to Taguchi’s L27 orthogonal array

considering the four laser cutting parameters namely laser

power, cutting speed, assist gas pressure and focus position. In

order to obtain minimum surface roughness, the cutting

parameters are optimized by integrating the ANN model with
the Cuckoo Search algorithm. In one another application

optimization of ATM cash is investigated using Genetic

Algorithm [15]. Stocking cash in ATMs entails costs that can

be broadly divided into two contributions, one financial cost

and other operational costs. The financial cost is mainly due to

the unused stock rated by annual passive interests. The

operational costs are mainly due to time to perform and

supervise the task, maintenance, out of service and risk of

robbery. Therefore it is desirable to perform an efficient refill

of ATMs so that the daily amount of stocked money can be

minimized but same time assuring good cash dispensing

service. Based on surveys, some important factors are taken
into consideration and GA is implemented to optimize the cash

it ATMs. A comparative study of performance of three

algorithms GA, PSO and CS in clustering problems is done in

[16]. Also, it is observed that under given set of parameters the

CS algorithm works efficiently for majority of data sets under

consideration and Lévyflights plays an important role. The

main version of cuckoo search algorithm has been utilized to

solve many connected problems. Morover, a discrete binary CS

algorithm has been developed and implemented efficiently on

knapsack 0-1 problems as in [17]. An extensive comparative

study of performance of the CS algorithm using some standard
test functions, newly designed stochastic test functions and the

constrained design optimization problems like welded beam

design and spring design is done in [18]concluding far better

results than the best results obtained by efficient PSO.Feature

selection is an optimization technique used in face recognition

technology. Feature selection removes the irrelevant, noisy and

redundant data thus leading to the more accurate recognition of

the face from the data base. Observing that the results of CS

algorithm are better than PSO and ACO, a proposal of

applying the CS algorithm for feature selection is presented in

[19].

In order to generate random numbers with symmetric

Lévydistribution, some algorithms like Mantegna’s algorithm,
rejection algorithm and MuCulloch’s algorithm exist [3, 20].

The performance of these algorithms for Lévy noise generation

has been compared in [3]. It shows that McCulloch’s algorithm

outperforms the other two. The natural question arises is that

how the performance of Cuckoo Search algorithm is affected if

McCulloch’s Algorithm is used to generate the Lévy flight

instead of Mantegna’s algorithm. Moreover, it is also

interesting to check the effect of adding a term similar to Local

Best in PSO algorithm while generating the cuckoo population.

Thoroughly examining the implementation of the CS algorithm

[21], some other implementation oriented changes have

become apparent for the possible betterment of the algorithm.
In this paper, we have implemented the Cuckoo Search

algorithm with Mantegna’s algorithm, the simplified version of

Mantegna’s algorithm, and the McCulloch’s algorithm,

incorporated into it one by one to generate the Lévy flights. For

each of these cases, the algorithm is implemented on ten

benchmark problems A to J.Moreover, various changes have

been made in the algorithm and extensive experiments are

carried out to test them on the same benchmark problems. The

outputs obtained are analyzed and tabulated [Table 1].The

algorithm is implemented in MATLAB.

The remainder of this paper is organized as follows.
Section II describes the working of all the algorithms used in

this work. A list of benchmark problems on which our testing

of algorithm has focused is given in section III, followed by the

implementation of the algotirhm in section IV. The results

obtained are discussed in section V. Sections VI and VII

contain conclusion and future work respectively.

II. Working of the algorithms

The Cuckoo Search algorithm via Lévy flights, Mantegna’s

algorithm, its simplified version algorithm and McCulloch’s

algorithm are described in the text follows. Discussion of other

implementation oriented modifications are also mentioned

thereafter.

A. Cuckoo Search via Lévy flights

Cuckoo Search algorithm is inspired by obligate brood

parasitism of some cuckoo species by laying their eggs in to

the nest of host birds. Those female parasitic cuckoos can

imitate the colors and pattern of the eggs of the host species.

For simplicity, it is assumed that there is only one egg at a time

in a nest. The available egg in the host nest represents an initial

solution. An egg laid by a cuckoo is representing a new

solution generated by the algorithm. The algorithm works on

the basis of following three assumptions:

 A cuckoo chooses a nest randomly to lay the egg and at

a time only one egg is laid by the cuckoo.

 The best nests with the high quality egg (solution) will

carry over to the next generations.

 The total number of available host nests is fixed and

the host bird can discover a cuckoo’s egg with a probability,

𝑃𝑎 ∈ 0, 1 . In this case, the host bird either destroys the egg or

Towards the Improvement of Cuckoo Search Algorithm 79

destroys the nest completely and builds up a new nest

somewhere else.

The third assumption can be approximated as a fraction

Paof the total n nests that are replaced by the new nests having

a new random solution. When generating new

solution𝑿 𝒕+𝟏 for, say, a cuckoo 𝒊,a Lévy flight is performed as

𝑿𝒊
 𝒕+𝟏 = 𝑿𝒊

 𝒕 + 𝜶 ⊕ 𝑳é𝒗𝒚 𝝀

where α > 0 is the step size which should be related to the

scales of the problem of interests. In most cases, α = 1 is used.

This equation is stochastic equation for random walk. In

general, a random walk is a Markov chain whose next location

depends only on the current location and the transition

probability. The product ⊕ means entrywise
multiplications.The Lévy flight essentially provides a random

walk while the random step length is drawn from a Lévy

distribution

Lévy~ 𝑢 = 𝑡−𝜆 , (1 < 𝜆 ≤ 3)

which has an infinite variance with an infinite mean. Here the
steps essentially form a random walk process with a power law

step length distribution with a heavy tail.

The algorithm can also be extended to more complicated

cases where each nest contains multiple eggs (a set of

solutions).The algorithm can be summarized as per the

following pseudo code:

Begin

The objective function is f(X), X=(x1, x2,…,xD).

Generate an initial population with n solution

vectors namely Xi, i=1,2,…,n.

While (t<Max interactions) and (termination condition

not achieved)
Generate a new solution vector Xnewvia Lévy

flight andevaluate its fitness say Fnew.

Randomly select a vector say Xjfrom the current

population and compare the function values

f(Xj) and f(Xnew).

If f(Xnew)<f(Xj), replace Xjby Xnew.

A fraction of the Pa of the worse nests is abandoned

and new nests are generated.

Keep the quality solutions and find the current

best solution vector

End while
Post process and results

End

B. Mantegna’s algorithm

Mantegna’s algorithm [22] produces random numbers

according to a symmetric Lévy stable distribution. It was

developed by R. Mantegna. The algorithm needs the

distribution parameters 𝛼𝜖 0.3, 1.99 , 𝑐 > 0, and the number of

iterations, 𝑛. It also requires the number of points to be

generated. When not specified, it generates only one point. If

an input parameter will be outside the range, an error message

will be displayed and the output contains an array of NaNs

(Not a number). The algorithm is described in following steps:

𝑣 =
𝑥

 𝑦
1

𝛼

wherex and y are normally distributed stochastic variables. But

x is calculated as 𝑥𝜎𝑥 , where

𝜎𝑥 𝛼 =
Γ 𝛼 + 1 𝑠𝑖𝑛

𝜋𝛼

2

Γ
𝛼+1

2
 𝛼2

𝛼−1

2

1

𝛼

, 𝜎𝑦 = 1

The resulting distribution has the same behavior of aLévy

distribution for large values of random variable 𝑣 ≫ 0 .
Using the nonlinear transformation

𝑤 = 𝐾 𝛼 − 1 𝑒
− 𝑣

𝐶(𝛼) + 1 𝑣,

the sum 𝑧𝑐𝑛 =
1

𝑛
1

𝛼
 𝑤𝑘

𝑛
1 quickly converges to aLévy stable

distribution. The convergence is assured by central limit

theorem. The value of 𝐾 𝛼 can be obtained as

𝐾 𝛼 =
𝛼Γ

𝛼+1

2𝛼

Γ
1

𝛼

𝛼Γ

𝛼+1

2

Γ 𝛼 + 1 𝑠𝑖𝑛
𝜋𝛼

2

1

𝛼

Also, 𝐶(𝛼) is the result of a polynomial fit to the values

tabulated in [14], obtained by resolving the following integral

equation:

1

𝜋𝜎𝑥

 𝑞
1

𝛼

∝

0

𝑒𝑥𝑝 −
𝑞2

2
−

𝑞
2

𝛼 𝐶(𝛼)2

2𝜎𝑥
2

 𝑑𝑞 =

1

𝜋
 𝑐𝑜𝑠

∝

0

 𝐾 𝛼 − 1

𝑒
+ 1 𝐶(𝛼) 𝑒𝑥𝑝 −𝑞𝛼 𝑑𝑞

The required random variable is given by 𝑧 = 𝐶
1

𝛼 𝑧𝑐𝑛 .

C. Simplified version algorithm

Mantegna’s algorithm uses two normally distributed

stochastic random variables to generate a third random variable

which has the same behavior of a Lévy distribution for large

values of the random variable. Further it applies a nonlinear

transformation to let it quickly converge to a Lévy stable

distribution. However, the difference between the Mantegna’s

algorithm and its simplified version used by Xin-She Yang and

Saush Deb as a part of cuckoo search algorithm is that the

simplified version does not apply the aforesaid nonlinear

transformation to generate Lévy flights. It uses the entry-wise
multiplication of the random number so generated and distance

between the current solution and the best solution obtained so

far (which look similar to the Global best term in PSO) as a

transition probability to move from the current location to the

next location to generate a Markov chain of solution vectors.

However, PSO also uses the concept of Local best.

Implementation of the algorithm is very efficient with the use

of Matlab’s vector capability, which significantly reduces the

running time. The algorithm starts with taking one by one

solution from the initial population and then replacing it by a

new vector generated using the steps described below.

𝑠𝑡𝑒𝑝𝑠𝑖𝑧𝑒 = 0.01 ∗ 𝑣.∗ (𝑠 − 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑏𝑒𝑠𝑡)

𝑛𝑒𝑤𝑠𝑜𝑙𝑛 = 𝑜𝑙𝑑𝑠𝑜𝑙𝑛 + 𝑠𝑡𝑒𝑝𝑠𝑖𝑧𝑒.∗ 𝑧

where𝑣 is same as Mantegna’s algorithm above with 𝜎𝑥

calculated for α =
3

2
.zis again a normally distributed stochastic

variable.

80 Soneji and Sanghvi

D. McCulloch’s algorithm

The algorithm was developed by J. H. McCulloch. It is

based on an explicit formula to generate random numbers from

a Lévy process, as a function of two independent variables 𝑤

and 𝜑 with uniform distribution in the range −
𝜋

2
 ,

𝜋

2
 and

standard exponential distribution, respectively is given by

𝑐
𝑁1𝑁2

𝐷
+ 𝜏

where

𝑁1 = 𝑠𝑖𝑛 𝛼𝜑 + 𝑡𝑎𝑛−1 𝛽𝑡𝑎𝑛 𝛼𝜋 2

𝑁2 = 𝑐𝑜𝑠 1 − 𝛼 𝜑 − 𝑡𝑎𝑛−1 𝛽𝑡𝑎𝑛 𝛼𝜋 2

1

𝛼
−1

𝐷 = 𝑐𝑜𝑠 𝑡𝑎𝑛−1 𝛽𝑡𝑎𝑛 𝛼𝜋 2

1

𝛼 𝑐𝑜𝑠𝜑
1

𝛼𝑤
1

𝛼
−1

It returns an 𝑛 × 𝑚 matrix of random numbers. The

required parameters are characteristic exponent 𝛼, skewness

parameter 𝛽, scale 𝑐, and location parameter 𝜏. The minimum

value of 𝛼 is 0.1 because of the non-negligible possibility of

overflow. When an input is not in the valid range, the resultant

matrix contains NaNs. Here the symmetric case of 𝛽 = 0 is

considered. In this case, the algorithm uses the following

formula:

𝑥 = 𝑐
𝑐𝑜𝑠 1 − 𝛼 𝜑

𝑤

1

𝛼
−1

sin⁡(𝛼𝜑)

cos⁡(𝜑)
1

𝛼

+ 𝜏

Two special cases are handled separately:

𝛼 = 2 (Gaussian case). In this case,

𝑥 = 𝑐2 𝑤 sin 𝜑 + 𝜏
𝛼 = 1 (Cauchy case). In this case,

𝑥 = 𝑐 𝑡𝑎𝑛 𝜑 + 𝜏

E. Simpified version including P-best

In the simplified version algorithm, the concept of global
best (G-best) is used in similar manner as in PSO algorithm.

But it does not include the current best vector (P-best) used in

PSO for generating the new solutions. We have included both

the G-best and the P-best in the simplified version algorithm to

generate the new solutions.

F. Simplified version including P-best and with Pa<0.25

In generating the new nests (solution vectors), the code

given in [21] modifies the 75% components of the total vectors

in a generation, by considering the probability𝑃𝑎 = 0.25. We

changed the probability Pa so that now only 25% components

of total vectors in a generation are modified to form the new

solutions. Other values of probability can also be tried for.Of

course, the algorithm again includes the P-best.

G. Simplified version including P-best and modifying all

components of 75% vectors

The simplified version algorithm changes 75% of the

components of the total vectorsin a generation to producethe

new solutions. A vector represents a nest. If only some of the

components of a vector are modified then it is not relevant to

the actual philosophy of the algorithm which says that the

entire nest is either being survived or destroyed as mentioned

in the third assumption.So we made some changes in the
algorithm which, rather than some components, actually

modifies all components of 75% of the vectors in a generation,

leaving 25% unchanged.

H. Simplified version including P-best and modifying all

components of 25% vectors

This variant is similar to algorithm G with the modification

that all components of 25% of the vectors in a generation are

changed to produce the new solutions.

III. Benchmark Problems

We have implemented the algorithms on the following

benchmark problems, A to J [23, 24, 25].

A. Sphere function

𝑓 𝑋 = (𝑥𝑖 − 1)2

𝐷

𝑖=1

Search space:𝑥𝑖 ∈ −5, 5 , 𝑖 = 1,2,… , 𝐷

Global minimum: 0 at (1,1,…,1)

B. Ackley function

𝑓 𝑋 = −20𝑒𝑥𝑝

−0.2

1

𝐷
 𝑥𝑖

2

𝐷

𝑖=1

−

𝑒𝑥𝑝
1

𝐷
 𝑐𝑜𝑠 2𝜋𝑥𝑖

𝐷

𝑖=1

 + 20 + 𝑒

Search space:𝑥𝑖 ∈ −5, 5 , 𝑖 = 1,2,… , 𝐷

Global minimum: 0at 𝑋= (0,0,…,0)

C. Dixon and Price function

𝑓 𝑋 = 𝑥1 − 1 2 + 𝑖 2𝑥𝑖
2 − 𝑥𝑖−1

2
𝐷

𝑖=2

Search space:𝑥𝑖 ∈ 0, 2 , 𝑖 = 1,2,… , 𝐷

Global minimum: 0 at𝑋 = 𝑥1 , 𝑥2 ,… , 𝑥𝐷

where, 𝑥𝑖 = 2
−

2𝑖−2

2𝑖

, 𝑖 = 1,2,… ,𝐷.

D. Griewank function

𝑓 𝑋 =
1

4000
 𝑥𝑖

2

𝐷

𝑖=1

− 𝑐𝑜𝑠
𝑥𝑖

 𝑖

𝐷

𝑖=1

+ 1

Search space:𝑥𝑖 ∈ −5, 5 , 𝑖 = 1,2,… , 𝐷

Global minimum: 0 at X = (0,0,…,0)

E. Step function

𝑓 𝑋 = 𝑥𝑖 + 0.5

𝐷

𝑖=1

Search space:𝑥𝑖 ∈ −5, 5 , 𝑖 = 1,2,… , 𝐷
Global minimum: 0 atX= (-0.5, -0.5,…,-0.5)

F. Levy function

𝑓 𝑋 = 𝑠𝑖𝑛2 𝜋𝑦1 +

 𝑦𝑖 − 1 2 1 + 10𝑠𝑖𝑛2 𝜋𝑦𝑖 + 1

𝐷−1

𝑖=1

+

 𝑦𝐷 − 1 2 1 + 10𝑠𝑖𝑛2 2𝜋𝑦𝐷 ,

Towards the Improvement of Cuckoo Search Algorithm 81

where,𝑦𝑖 = 1 +
𝑥𝑖−1

4
, 𝑖 = 1,2, … ,𝐷

Search space:𝑥𝑖 ∈ −10, 10 , 𝑖 = 1,2,… , 𝐷

Global minimum: 0 at X = (1,1,…,1)

G. Generalized Schwfel 2.6 function

𝑓 𝑋 = 418.9829𝐷 − 𝑥𝑖𝑠𝑖𝑛 𝑥𝑖

𝐷

𝑖=1

Search space:𝑥𝑖 ∈ 300, 500 , 𝑖 = 1,2,… , 𝐷

Global minimum: 0 at (420.9687, 420.9687,…, 420.9687)

H. Generalized Rozenbrock function

𝑓 𝑋 = 100 𝑥𝑖
2 − 𝑥𝑖+1

2 + 𝑥𝑖 − 1 2

𝐷−1

𝑖=1

Search space:𝑥𝑖 ∈ −5, 5 , 𝑖 = 1,2,… , 𝐷
Global minimum: 0 at (1,1,…,1)

I. Rastrigin function

𝑓 𝑋 = 10𝐷 + 𝑥𝑖
2 − 10𝑐𝑜𝑠 2𝜋𝑥𝑖

𝐷

𝑖=1

Search space:𝑥𝑖 ∈ −0.9, 0.9 , 𝑖 = 1,2,… ,𝐷
Global minimum: 0 at X = (0,0,…,0)

J. Weierstrass function

𝑓 𝑋 = 𝑎𝑘𝑐𝑜𝑠 2𝜋𝑏𝑘 𝑥𝑖 + 0.5

𝑘𝑚𝑎𝑥

𝑘=0

𝐷

𝑖=1

−𝐷 𝑎𝑘𝑐𝑜𝑠 2𝜋𝑏𝑘0.5

𝑘𝑚𝑎𝑥

𝑘=0

a=0.5, b=3, kmax=20.

Search space:𝑥𝑖 ∈ −0.5, 0.5 , 𝑖 = 1,2,… ,𝐷

Global minimum:0at (0,0,…,0)

IV. Implementation of the algorithms

The Cuckoo search algorithm, with each of the three above

mentioned algorithms incorporated into it one by one to

generate Lévy flight, is run 100 times. The population size is

25 and all the benchmark problems on which the algorithms

are implemented are 15 dimensional unconstrained

minimization problems. In Mantegna’s algorithm the

parameters are set as α =
1

2
, 𝑐 = 1.The simplified version

algorithm uses parameterα =
3

2
. McCulloch’s algorithm takes

the parameters𝛼 = 0.5, 𝛽 = 0 and 𝑐 = 1.Also the pseudo code

for the cuckoo search algorithm is given sequentially, but in

order to take advantage of Matlab’s vector capability, all new

25 solution vectors are generated at a time and then they get

replaced one by one by better solutions.

V. Results obtained

With all the modifications B to H of the algorithm described

above, Cuckoo Search algorithm is implemented on above

mentioned benchmark problems A to J. The results obtained

are analyzedin terms of the best and the worst solution, mean

and the standard deviation of the optimum values obtained in

100 runs, the number of optimum values obtain within one

standard deviation interval, and the time of execution for 100

runs.The Count1 and Count2 variables in the table are

showing, out of 100 runs how many optimum values are

obtained within one and two standard deviation interval from

the actual global minimum.The tabulated outputs are shown in
the table1 in appendix.

VI. Conclusion

From the outputs obtained, we see that McCulloch algorithm

and simplified version of Mantegna’s algorithm are more

efficient than Mantegna’s algorithm in terms of runtime.

Further,addition of the Local Best term in the simplified

version algorithm gives better results in many problems and
comparable results in others with slight increase in the run

time. However, replacing entire vector instead of some of its

components does not reveal any significant improvement in the

result, though it is preferable according to the base of the

algorithm.

VII. Future work

As we have seen that the Cuckoo Search algorithm with
simplified version of Mantegna’s algorithm to generate Lévy

flight is improved by adding the Local Best term. This

improved version of CS can also be applied to constrained

optimization problems to check its effect on the performance.

At present, a fraction of the nests are replaced randomly.

Instead, the poorer solutions can be prioritized for removal.

Similarly, the probability of removal can also be varied and its

appropriate value can be sought.

VIII. References

[1]X. -S. Yang., S. Deb.“Cuckoo search via

LévyFlights”,inProceedings of World Congress on Nature
& Biologically Inspired Computing (NaBIC 2009), India,

IEEE publications, USA, pp 210-214.

[2]http://cambridge.academia.edu/XinSheYang/Teaching

[3]http://people.unipmn.it/scalas/report1_eng.pdf

[4 H.Soneji., R. C.Sanghvi. “Towards the Improvement of

Cuckoo Search Algorithm”, in Proceedings of World

Congress on Information and Communication

Technologies (WICT), 2012, pp. 878-883.

[5]S. Walten., O. Hassan., K. Morgan., M. R. Brown.

“Modified Cuckoo Search: A new Gradient Free

Optimization Algorithm”, Chaos, Solitons and Fractals,
Vol. 44, issue 9, pp. 710-718.

[6]H. Salimi., D. Giveki.,M.Settanshahi., J. Hatami.

“Extended Mixture of MLP Experts by Hybrid of

Conjugate Gradient Method and Modified Cuckoo Search”,

International Journal of Artificial Intelligence &

Applications (IJAIA), Vol. 3, No. 1, Jan. 2012, pp. 1-13.

[7]A. Kaveh., T. Bakshpoori.“Optimum Design of Space

Trusses using Cuckoo Search algorithm with Lévy Flights”,

IJST Transactions of Civil Engineering, Vol. 37, No. C1,

pp. 1-15.

[8]A. R. Yildiz. “Cuckoo Search Algorithm for the

Selection of Optimal Machining Parameters in Milling
Operations”, The International Journal of Advanced

Manufacturing Technology, Vol. 64, issue 1-4, pp. 55-61.

82 Soneji and Sanghvi

[9]M. Tuba., M. Subotic., N. Stanarevik. “Modified Cuckoo

search algorithm for unconstrained optimization problems”,

in Proceedings of the European Computing Conference, pp.

263-268.
[10]E. Valian., S. Mohanna., S. Tavakoli. “Improved Cuckoo

Search Algorithm for Global Optimization”, International

Journal of Communications and Information Technology,

IJCIT, Vol. 1, No. 1, Dec. 2011, pp. 31-44.

[11]E. Valian., S. Mohanna., S. Tavakoli. “Improved Cuckoo

Search Algorithm for Feedforward Neural Network

Training”, International Journal of Artificial Intelligence &

Applications (IJAIA), Vol. 2, No. 3, July, 2011, pp. 36-43.

[12]X. Li., J. Wang., M. Yim. “Enhancing performance of

cuckoo search algorithm using orthogonal learning

method”, Natural Computing and Applications, DOI:

 10.1007/s00521-013-1354-6, Print ISSN 0941-0643,
February 2013, Springer-Verlag.

[13]P. Civicioglu., E. Besdoc. “A conceptual comparison of

the Cuckoo-search, Particle Swarm Optimization,

 Differential Evolution and Artificial Bee Colony

algorithms”, Artificial Intelligence Review, DOI:

 10.1007/s10462-011-9276-0, Print ISSN 0269-2821,

July 2011, Springer-Netherlands.

[14]M. Madic., M. Radovanovic. “Application of Cuckoo

 Search algorithm for surface roughness optimization in

 CO2 Laser Cutting”, Analysis of Faculty Engineering

Hunedoara-international Journal of Engineering, ISSN
 1584-2665, Tome XI, 2013, Fascicule1, pp. 39-44.

[15]R. Armenise., C. Birtolo., E. Sangianantoni., L. Troiano.

 “Optimizing ATM Cash Management by Genetic

 Algorithm”, International Journal of Computer Systems

and Industrial Management Applications, ISSN 2150-7988,

volume 4, 2012, pp. 598-608.

[16]J. Senthinath., V. Das., S. N. Omkar., V. Mani. “Clustering

usingLévy Flight Cuckoo Search”, Advances in Intelligent

 Systems and Computing 202, DOI: 10.1007/978-81-322-

 1041-2_6, Springer India 2013, pp. 65-75.

[17]S. Nozarian., H. Soltanpoor., M. VafaeiJahan. “A Binary

 Model on the Basis of Cuckoo Search Algorithm in order
to Solve the Problem of Knapsack 1-0”, International

 Conference of Sysem Engineering and Modeling

 (ICSEM), 2012, IPCSIT vol. 2, pp. 67-71.

[18]X. S. Yang., S. Deb. “Engineering Optimization by

 Cuckoo Search”, Int. J. Mathematical Modelling and

 Numerical Optimization, Vol. 1, No. 4, 2010, pp. 330-343.

[19]V. Tiwari. “Face Recognition Based on Cuckoo Search

 Algorithm”, Indian Journal of Computer Science and

 Engineering (IJCSE), ISSN 0976-5166, Vol. 3, No. 3, Jun-

 Jul 2012, pp. 401-405.

[20]S. Popa.,D. Stanescu.,S. S. Wulff. “Numerical Generation

of Symmetric α-stable random variables”, STDIA Univ.
BABES-BOLYAI, Mathematica, Vol. LIII, No. 3,

September 2008, pp. 105-117.

[21]http://www.mathworks.in/matlabcentral/fileexchange/

29809-cuckoo-search-cs-algorithm/content/

cuckoo_search.m

[22]R. Mantegna. “Fast, Accurate algorithm for Numerical

Simulation of Lévy Stable Stochastic Processes”, Physical

Review E, Vol. 49, No. 5, May 1994, pp. 4677-4683.

[23]L. Jaewook.“A novel three-phase trajectory informed

search methodology for optimization”, J. Glob Optim,

(2007),38, DOI: 10.1007/s10898-006-9083-3, pp.
61-77.

[24]D. Bratton., T. Blackwell, “A Simplified Recombinant

PSO”, Journal of Artificial Evolution & Applications, Vol.

2008, DOI: 10.1155/2008/654184, pp. 1-10.

[25]M. R. Meybody., M. Hamidi. “New LearningAutomata

based PSO Algorithms”, in Proceedings of IDMC 2008,

Nov. 2008, pp. 1-15.

Appendix

TABLE 1.Analysis of Outputs

A. Sphere function

Algorithm Best Worst Average Std. dev. Avg. No.

of iterations

Count1 Count2 Elapsed

time (S)
B 3.2567e-

006

9.9861e-
006

8.7945e-
006

1.1457e-
006

30292 80 19 1879.80

Solution vector corresponding to the best optimum value for Mantegna’s Algorithm
1.0004 0.9997 0.9999 0.9993 1.0003 0.9999 0.9998 1.0008 0.9998 0.9996 0.9990 0.9998 1.0001 0.9999

0.9993

C 4.0631e-
006

9.9896e-006 8.7270e-
006

1.1517e-006 25054 75

23 59.01

1.0002 1.0002 1.0005 1.0004 0.9989 1.0009 0.9998 1.0007 0.9999 0.9990 1.0001 1.0003 0.9998 0.9999
0.9997

D 4.8812e-
006

9.9891e-
006

8.7563e-
006

1.0407e-
006

28903

72 27 51.53

1.0012 0.9999 1.0004 0.9998 0.9995 1.0009 0.9993 1.0002 0.9997 1.0011 0.9998 1.0006 1.0001 0.9999
0.9997

E 4.0289e-
006

9.9999e-
006

8.6139e-
006

1.2774e-
006

22709 75 24 99.21

1.0002 1.0002 1.0005 0.9992 1.0013 1.0003 0.9998 1.0005 0.99950.9998 1.0004 1.0004 0.9995 1.0003

0.9999

Towards the Improvement of Cuckoo Search Algorithm 83

F 5.2293e-
006

9.9980e-
006

8.8852e-
006

1.0104e-
006

26732 77 22 99.71

0.9993 1.0000 0.9996 0.9995 0.9999 0.9995 1.0001 0.9992 0.99990.9995 1.0003 0.9991 1.0004 1.0014
1.0004

G 5.6880e-
006

5.1930e-
005

1.0429e-
005

5.1315e-
006

54069 94 4 213.36

1.0003 0.9997 0.9996 0.9999 0.9997 0.9997 0.9998 0.9990 0.99981.0000 0.9990 1.0016 1.0009 1.0001
0.9999

H 6.1369e-
006

1.3901e-
005

9.4048e-
006

1.0205e-
006

76137 86 11 290.14

1.0003 1.0007 1.0001 0.9992 1.0007 1.0009 0.9994 1.0003 0.99931.0001 0.9985 1.0006 1.0000 0.9998
1.0000

C. Dixon and Price function

B 4.0070e-

006

9.9880e-
006

8.7633e-
006

1.2430e-
006

115242

83 15 7199.48

0.9999 0.7071 0.5946 0.5452 0.5221 0.5107 0.5053 0.5026 0.5013 0.5006 0.5002 0.5001 0.5000 0.4999
0.5000

C 5.2696e-
006

9.9917e-
006

8.8244e-
006

1.0972e-
006

71392 73 26 201.72

0.9998 0.7072 0.5947 0.5452 0.5221 0.5109 0.5056 0.5031 0.5015 0.5007 0.5004 0.5001 0.5000 0.5000
0.5000

B. Ackley function

B 6.9467e-
006

9.9980e-
006

9.3813e-
006

6.1186e-
007

57215 84 14 3598.08

1.0e-005 *
(0.3375 -0.3166 0.2427 -0.0699 0.0433 -0.0203 0.0114 -0.0698 0.2428 0.0054 0.2222 0.0587 -0.1648 -0.1370

-0.0970)
C 5.7285e-

006
9.9999e-
006

9.2924e-
006

7.5327e-
007

52180 89 10 169.23

1.0e-005 *
(-0.0387 -0.2867 -0.1907 0.0663 -0.0479 -0.1729 -0.0042 0.0668 -0.1799 -0.0315 0.2273 -0.0633 0.1211 0.1667

-0.1226)
D 6.8473e-

006
9.9936e-
006

9.2404e-
006

6.7318e-
007

55348 75 23 162.86

1.0e-005 *
(-0.0780 -0.0021 0.2249 -0.0665 0.0855 0.0770 -0.0320 -0.3295 -0.1894 -0.1581 -0.0827 0.1628 0.1942 -0.3411

0.0857)
E 7.8095e-

006

9.9964e-

006

9.3539e-

006

5.6470e-

007

53849 63 37 309.78

1.0e-005 *
(-0.0992 0.1977 0.2953 0.2978 0.0845 0.0079 0.0096 0.2059 0.0914 -0.2830 -0.1501 0.2485 0.3192 -0.1491

0.0202)
F 7.8898e-

006
9.9996e-
006

9.4820e-
006

4.6686e-
007

78295 69 30 370.46

1.0e-005 *
(0.2066 0.2275 -0.1172 -0.0067 0.2004 0.2766 0.0454 0.1715 -0.0165 -0.4995 0.2424 -0.1002 0.0516 0.0049

 -0.0771)
G 1.4341e-

005
0.0085 0.0016 0.0017 250050 87 10 1251.39

1.0e-005 *
(-0.3341 0.2100 -0.1918 0.0968 -0.0504 0.2523 -0.4797 0.2357 0.0813 -0.4336 0.5124 0.0701 0.1220 0.2327 -

0.9181)
H 4.1774e-

005
0.0049 8.1326e-

004
8.7564e-
004

250050 87 10 1190.88

1.0e-004 *
(0.1513 -0.0048 0.0391 -0.0276 0.1309 0.2200 -0.0659 0.1526 0.00370.1111 0.0178 -0.1662 -0.0196 -0.0047 -

0.0669)

84 Soneji and Sanghvi

D 4.5957e-
006

9.9951e-
006

8.8336e-
006

9.3460e-
007

112070 66 33 206.76

0.9989 0.7066 0.5942 0.5451 0.5220 0.5110 0.5053 0.5025 0.5013 0.5007 0.5004 0.5002 0.5001 0.5000
0.5001

E 6.0701e-
006

9.9852e-
006

9.1036e-
006

8.3417e-
007

50227 81 18 210.48

1.0009 0.7074 0.5948 0.5452 0.5224 0.5111 0.5057 0.5027 0.50130.5007 0.5002 0.5001 0.5000 0.5000
0.5000

F 6.2179e-
006

9.9997e-
006

9.0701e-
006

9.0783e-
007

51948 85 18 180.25

0.9997 0.7069 0.5947 0.5453 0.5220 0.5109 0.5051 0.5024 0.50110.5004 0.5001 0.5000 0.5000 0.4999

0.4999
G 8.0211e-

006
1.4276e-
004

1.6982e-
005

2.0736e-
005

110125 93 5 409.53

1.0008 0.7073 0.5946 0.5453 0.5221 0.5109 0.5054 0.5029 0.5015 0.5006 0.5006 0.5002 0.5001 0.5001
0.5000

H 6.6130e-
006

4.0624e-
005

1.0180e-
005

3.9246e-
006

106177 93 5 384.50

1.0010 0.7073 0.5945 0.5451 0.5224 0.5111 0.5056 0.5027 0.5015 0.5007 0.5003 0.5001 0.5001 0.5001

0.5002

D. Griewank function

B 5.7618e-

006

9.9869e-
006

8.9680e-
006

9.0289e-
007

74986 71 28 4644.76

-0.0005 0.0004 -0.0012 0.0022 0.0030 0.0025 0.0030 -0.0035 -0.0007 -0.0044 0.0024 -0.0033 -0.0014 -0.0014
0.0014

C 3.5171e-
006

9.9939e-
006

8.8725e-
006

1.1396e-
006

51288 86 12 185.91

-0.0004 -0.0022 -0.0006 -0.0002 -0.0010 -0.0003 -0.0016 -0.0013 -0.0012 -0.0009 -0.0043 -0.0017 0.0043 -0.0002
-0.0007

D 4.5841e-
006

9.9939e-
006

9.0155e-
006

9.3623e-
007

80841

81 18 197.59

0.05 0.0009 0.0000 0.0024 0.0001 0.0011 -0.0006 -0.0006 0.0015 -0.0031 0.0059 0.0046 -0.0000 0.0029 0.0011

E 5.0555e-
006

9.9961e-
006

8.5652e-
006

1.0888e-
006

34027 72 27 187.47

0.0019 -0.0001 -0.0005 0.0005 0.0022 0.0031 -0.0013 -0.0032 -0.0019 -0.0007 0.0014 -0.0001 0.0036 0.0011 -

0.0028
F 5.1481e-

006
9.9938e-
006

8.8811e-
006

1.0742e-
006

33657 81 16 155.46

-0.0005 -0.0002 0.0004 0.0031 0.0018 0.0054 -0.0000 -0.0013 0.00220.0002 0.0022 -0.0025 0.0007 0.0013
0.0002

G 4.9378e-
006

9.9996e-
006

9.2825e-
006

8.4246e-
007

33595 88 10 162.55

0.0007 -0.0002 -0.0030 0.0040 -0.0001 0.0015 -0.0007 -0.0023 0.00100.0000 0.0014 -0.0022 -0.0008 0.0001

0.0021
H 5.5236e-

006
9.9919e-
006

8.9231e-
006

9.7572e-
007

79051 78 20 369.77

0.0011 -0.0001 -0.0008 0.0005 0.0007 0.0023 0.0006 -0.0010 0.0035-0.0060 -0.0008 -0.0038 -0.0013 -0.0015 -
0.0053

E. Step function

B 5.7994e-
006

9.9997e-
006

9.3504e-
006

7.1027e-
007

64890 87 11 49324.45

-0.5000 -0.5000 -0.5000 -0.5000 -0.5000 -0.5000 -0.5000 -0.5000 -0.5000 -0.5000 -0.5000 -0.5000 -0.5000 -0.5000
-0.5000

Towards the Improvement of Cuckoo Search Algorithm 85

C 7.0603e-
006

9.9921e-
006

9.3225e-
006

6.6777e-
007

53039 83 15 119.74

-0.5000 -0.5000 -0.5000 -0.5000 -0.5000 -0.5000 -0.5000 -0.5000 -0.5000 -0.5000 -0.5000 -0.5000 -0.5000 -0.5000
-0.5000

D 6.0982e-
006

9.9998e-
006

9.3788e-
006

6.3441e-
007

63368

90 9 86.10

-0.5000 -0.5000 -0.5000 -0.5000 -0.5000 -0.5000 -0.5000 -0.5000 -0.5000 -0.5000 -0.5000 -0.5000 -0.5000 -0.5000
-0.5000

E 6.1740e-
006

9.9913e-
006

9.2191e-
006

7.0416e-
007

56561 80 18 189.73

-0.5000 -0.5000 -0.5000 -0.5000 -0.5000 -0.5000 -0.5000 -0.5000 -0.5000 -0.5000 -0.5000 -0.5000 -0.5000 -0.5000
-0.5000

F 6.5182e-
006

9.9978e-
006

9.3144e-
006

7.4204e-
007

67043 83 16 230.05

-0.5000 -0.5000 -0.5000 -0.5000 -0.5000 -0.5000 -0.5000 -0.5000 -0.5000 -0.5000 -0.5000 -0.5000 -0.5000 -0.5000
-0.5000

G 3.5900e-
004

0.0237 0.0055

0.0040 250050 75 24 864.14

-0.5000 -0.5000 -0.5001 -0.4999 -0.5000 -0.4999 -0.5000 -0.5000 -0.5000-0.4999 -0.5000 -0.5000 -0.5000 -0.5000 -
0.5000

H 3.6564e-
004

0.0177 0.0044 0.0030 250050 81 17 892.24

-0.5000 -0.4998 -0.5000 -0.5000 -0.5000 -0.5000 -0.5000 -0.5000 -0.5000 -0.5000 -0.5000 -0.5000 -0.4998 -0.5000
-0.5000

F. Levy function

B 5.2459e-

006

9.9702e-

006

8.6432e-

006

1.1694e-

006

49029

67 33 6137.60

0.9999 1.0012 0.9993 1.0001 1.0006 0.9988 0.9992 0.9994 0.9994 0.9992 1.0000 0.9998 0.9986 1.0004
0.9955

C 4.2144e-
006

9.9917e-
006

8.8422e-
006

1.2086e-
006

52165

85 13 338.76

1.0000 0.9993 0.9988 0.9991 0.9996 1.0005 0.9990 0.9992 1.0005 0.9995 1.0002 0.9988 1.0007 0.9996

1.0025

D 6.2420e-
006

9.9940e-
006

8.8758e-
006

9.2807e-
007

40731 68 32 228.21

0.9992 0.9996 1.0018 1.0005 0.9985 0.9991 0.9998 0.9996 0.9988 0.9994 0.9994 1.0013 0.9996 0.9998
0.9994

E 3.6972e-
006

9.9763e-
006

8.9246e-
006

1.1450e-
006

49005 86 12 345.55

0.9997 1.0001 1.0005 1.0001 1.0003 0.9998 1.0013 0.9988 1.00041.0008 0.9991 1.0006 1.0000 0.9992
1.0028

F 5.7284e-
006

9.9887e-
006

8.7916e-
006

1.0038e-
006

51325 69 30 368.60

0.9994 1.0007 0.9993 1.0005 0.9994 1.0004 1.0002 0.9975 1.00041.0006 1.0007 1.0010 1.0008 0.9999
0.9991

G 7.2409e-
006

1.3956e-
004

1.7626e-
005

2.0639e-
005

125180 91 5 2142.80

1.0004 1.0004 1.0009 1.0014 0.9984 0.9996 0.9999 0.9990 1.0002 0.9984 1.0003 1.0010 1.0000 0.9994
1.0053

H 7.0236e-
006

0.0010 2.1247e-
005

1.0299e-
004

168845 99 0 1291.43

0.9988 0.9993 0.9989 1.0003 0.9987 1.0011 0.9995 0.9997 1.00061.0002 1.0001 1.0000 1.0023 0.9997
0.9991

G. Generalized Schwfel 2.6 function

B 1.9095e-

004

1.9100e-

004

1.9099e-

004

1.1584e-

008

47138

75 25 2830.24

86 Soneji and Sanghvi

420.9688 420.9689 420.9688 420.9685 420.9690 420.9690 420.9688 420.9687 420.9690 420.9686 420.9686 420.9687
420.9686 420.9688 420.9689

C 1.9095e-
004

1.9100e-
004

1.9099e-
004

1.1858e-
008

39452

75 25 130.09

420.9686 420.9689 420.9686 420.9689 420.9687 420.9689 420.9687 420.9689 420.9687 420.9686 420.9688 420.9688
420.9686 420.9685 420.9684

D 1.9095e-
004

1.9100e-
004

1.9099e-
004

9.8004e-
009

47343 70 29 117.09

420.9686 420.9686 420.9687 420.9686 420.9684 420.9686 420.9689 420.9688 420.9688 420.9687 420.9688 420.9687

420.9690 420.9689 420.9688
E 1.9095e-

004
1.9099e-
004

1.9098e-
004

7.9203e-
009

40190 82 17 162.97

420.9687 420.9687 420.9688 420.9690 420.9689 420.9690 420.9687 420.9688 420.9688420.9685 420.9688 420.9687
420.9686 420.9687 420.9689

F 1.9095e-
004

1.9099e-
004

1.9098e-
004

8.5980e-
009

49122 88 9 202.44

420.9687 420.9688 420.9686 420.9685 420.9689 420.9688 420.9687 420.9688 420.9689420.9688 420.9687 420.9687

420.9685 420.9688 420.9688
G 1.9098e-

004
0.0031 3.4766e-

004
3.6788e-
004

242458 94 4 1059.23

420.9688 420.9690 420.9688 420.9688 420.9688 420.9690 420.9689 420.9690 420.9690420.9687 420.9690 420.9686
420.9692 420.9687 420.9688

H 1.9098e-
004

5.4799e-
004

2.3815e-
004

7.7540e-
005

245545 87 10 1048.99

420.9690 420.9687 420.9687 420.9687 420.9687 420.9688 420.9684 420.9692 420.9687 420.9684 420.9688 420.9689

420.9686 420.9686 420.9689

H. Generalized Rozenbrock function

B 5.9126e-

006

9.9910e-
006

9.0904e-
006

8.9282e-
007

180592

82 17 10935.36

1.0000 1.0000 1.0000 0.9999 0.9999 0.9999 1.0000 1.0000 1.0000 0.9999 0.9999 0.9998 0.9997 0.9994
0.9988

C 5.2451e-
006

9.9989e-
006

8.7796e-
006

1.2255e-
006

153918

80 20 416.28

1.0000 1.0001 1.0001 1.0001 1.0001 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9998 0.9996
0.9992

D 3.5767e-
006

9.9861e-
006

8.9595e-
006

1.0825e-
006

178861

87 11 342.38

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9999 0.9997 0.9993
0.9987

E 6.4442e-
006

9.9679e-
006

9.1012e-
006

8.6809e-
007

178901 85 14 604.98

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0001 1.0001 1.00001.0000 1.0001 1.0001 1.0002 1.0004
1.0009

F 3.3758e-
006

9.9981e-
006

8.9790e-
006

1.3726e-
006

2786167 88 9 9695.60

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.00011.0001 1.0001 1.0001 1.0002 1.0004
1.0010

G 0.0049 4.2062 0.2952 0.5756 250050 96 2 915.23
0.9997 0.9996 0.9980 0.9990 1.0010 1.0004 1.0003 1.0006 1.00181.0007 0.9985 0.9959 0.9912 0.9823

0.9629
H 0.0018 6.6209 0.6577 0.9572 250050 92 5 898.87

0.9992 1.0000 1.0010 0.9999 1.0008 1.0007 0.9996 0.9999 1.00011.0006 1.0007 1.0012 1.0029 1.0044
1.0080

I. Rastrigin function

B 5.1106e-

006

9.9937e-
006

8.8557e-
006

1.1609e-
006

148996

85 14 17878.04

1.0e-004 *
(0.0172 -0.1457 -0.0348 -0.0636 0.7672 0.5330 -0.2948 -0.2397 -0.2673 -0.1595 -0.6657 0.6431 0.7142 0.2578

-0.0454)
C 5.7378e- 9.9983e- 8.9440e- 1.0180e- 117280 79 19 335.70

Towards the Improvement of Cuckoo Search Algorithm 87

006

006

006

006

1.0e-004 *
(-0.2367 0.6540 -0.5494 -0.3404 -0.6498 -0.4619 0.1200 -0.4927 -0.0967 -0.3726 0.1325 -0.3121 -0.4535 0.1428

0.7801)

D 5.1870e-
006

9.9959e-
006

8.8865e-
006

1.0213e-
006

150460

79 20 308.76

1.0e-004 *
(0.5935 0.6347 0.2006 0.1777 -0.7579 -0.2038 -0.2997 -0.4182 0.0807 0.3540 -0.0561 0.5301 -0.0770 0.6941 -

0.0572)
E 4.6449e-

006

9.9969e-

006

8.9237e-

006

9.3483e-

007

111777 73 25 388.30

1.0e-004 *
(-0.4289 0.3301 0.0170 -0.5071 -0.2502 0.4892 -0.0266 -0.0260 0.25200.9068 0.2732 0.1134 -0.4025 -0.2850

0.5206)
F 5.3737e-

006
9.9841e-
006

8.7024e-
006

1.1478e-
006

76599 71 29 273.38

1.0e-004 *
(0.6769 -0.6097 0.0239 -0.5833 -0.1260 0.1887 0.4944 0.1008 -0.38200.4067 -0.5938 0.1867 0.1583 0.6833

0.2029)
G 7.9957e-

006
2.7199 0.1361 0.5957 209400 95 0 798.18

1.0e-003 *
(-0.0002 0.0348 -0.0592 -0.0554 0.0334 0.0338 -0.0575 0.0279 -0.0530-0.0350 0.0419 0.1259 -0.0298 0.0550

0.0249)
H 8.4836e-

006
5.5275 1.3070 1.6926 249068 91 9 926.86

1.0e-003 *

(-0.0412 0.0288 -0.0448 -0.1092 0.1265 0.0195 -0.0147 -0.0286 -0.0054 -0.0458 -0.0712 0.0281 0.0224 0.0194
0.0006)

J. Weierstrass function

B 5.6438e-

006

9.9953e-
006

9.0794e-
006

9.1828e-
007

152255

83 15 13062.56

1.0e-010*
(-0.3072 0.1276 0.7386 0.3193 0.4202 0.1431 -0.1365 -0.1628 0.0228 -0.0438 -0.0686 -0.3037 -0.2694 0.9639

-0.4146)

C 5.0205e-
006

9.9779e-
006

8.8138e-
006

1.1420e-
006

176001

84 15 5320.60

1.0e-009 *
(-0.0442 -0.0088 0.1289 -0.0145 -0.0030 0.0144 0.0120 -0.0303 0.0051 -0.0424 0.0067 -0.0068 -0.0249 -0.0119

0.0372)
D 6.0728e-

006

9.9969e-
006

9.1135e-
006

8.1877e-
007

152575

72 26 4257.29

1.0e-010 *
(-0.4487 -0.3217 -0.2167 -0.1818 0.1428 0.0274 -0.1441 0.1908 0.3232 -0.3613 0.6083 0.8060 0.7243 0.3006

0.0619)
E 4.5747e-

006
9.9979e-
006

8.8024e-
006

1.1522e-
006

147530 81 16 4566.94

1.0e-010 *
(0.6775 -0.0590 -0.1896 -0.0588 0.1378 -0.3148 0.4213 -0.1647 -0.1570 -0.5015 0.7391 -0.1638 -0.1933 0.0000 -

0.1660)
F 5.5391e-

006
9.9964e-
006

9.1979e-
006

9.0840e-
007

165474 87 11 5090.04

1.0e-009 *
(0.0110 0.0271 0.0178 -0.0601 -0.0174 -0.0079 -0.1396 0.0202 -0.03680.0235 0.0043 -0.0246 0.0053 -0.0267 -

0.0002)

G 0.0827 1.3395 0.3113 0.2484 250050 89 7 8400.94
1.0e-003 *

(0.0006 -0.0189 0.0000 -0.0000 0.0006 -0.0030 -0.0000 0.0050 -0.1524 0.0000 -0.0339 -0.0002 0.4575 -0.0000
-0.0621)

H 0.0697 1.0990 0.2130 0.1132 250050 92 7 7697.71

88 Soneji and Sanghvi

1.0e-003 *
(0.0081 -0.0009 -0.0017 -0.0004 0.1132 0.0001 -0.0022 -0.1394 0.0150-0.0342 0.0357 0.0002 0.0018 -0.0003

0.0007)

