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Abstract—Cuckoo search algorithm via Lévy flights by Xin-She 

Yang and Saush Deb [1] for optimizing a nonlinear function uses 

generation of random numbers with symmetric Lévy distribution 

obtained by Mantegna’s algorithm. However, instead of using the 

original algorithm, itssimplified version is used to generate Lévy 

flights during the Cuckoo Search algorithm [2].A paper by 

MatteoLeccardi [3] describes three algorithms,namely, 

Mantegna’s algorithm, rejection algorithmand McCulloch’s 

algorithm to generate such random numbers and claims 

thatMcCulloch’s algorithm outperforms the other two. The idea 

in this paper is to compare the performance of Mantegna’s 

algorithm, its simplified version, and McCulloch’s algorithm 

when each of them is incorporated in Cuckoo search algorithm to 

generate Lévy flights [4].Moreover, a term similar to the Local 

Best component of PSO is added in updating the population while 

implementing the CS algorithm using simplified version of 

Mantegna’s algorithm and the results are analyzed. Some other 

implementation oriented changes are also incorporated and their 

effect is studied. 

 
Keywords-Cuckoo search,Lévy flights, Optimization,Random 

number generation, Mantegna’s algorithm, McCulloch’s algorithm, 
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I. Introduction 

During last few years, many nature inspired evolutionary 
algorithms have been developed for optimization. These 
algorithms work on the basis of random search in some suitable 
search region depending on the problem. Though it is a random 
search, it is not truly random because there is a mechanism in 
the algorithm which guides the search in such a manner that the 
solution vector gets improved step by step. Two crucial 
characteristics of these modern meta-heuristics are 
intensification (exploitation) and diversification (exploration). 
Intensification intends to search around the current best 
solutions, while diversification tries to explore the search space 
efficiently so that the algorithm does not get stuck into local 
optimum.   Such algorithms have become quite popular and 
helping due to their efficiency in terms of robustness, accuracy, 
speed and simple implementation. But at the same time, they 
have some drawbacks like, one particular algorithm may be 
efficient for a specific class of optimization problems but may 

not be so efficient for some other class of optimization 
problems or sometimes they get stuck into local optimum.  

One of such nature inspired algorithms is Cuckoo Search 

algorithm (CS). The algorithm was developed by Xin-She 

Yang and Suash Deb in 2009 [1]. It was inspired by obligate 
brood parasitism of some cuckoo species by laying their eggs 

in to the nest of host birds. Those female parasitic cuckoos can 

imitate the colors and pattern of the eggs of the host species. 

So there are fewer chances that the host bird may identify and 

destroy the eggs. But, by chance, if the host bird discovers that 

the eggs are different, it will either destroy the eggs or may 

destroy the nest completely and build a new nest at different 

place. The timing of egg-laying of some species is also 

amazing. The parasitic cuckoo often chooses a host nest where 

the eggs are just laid. In general, the cuckoo eggs are hatched 

little earlier than the host eggs. As soon as the first cuckoo 
chick is hatched, it starts throwing out the host eggs blindly out 

of the nest sothat it can increase the share of its food provided 

by the host bird. 

The animals search for food in random manner. Their 

search path is made up of step by step random walk or flight 

which is based on the current location and the transition 

probability to the next location. Various studies show that the 

flight behavior of animals or birds has typical characteristics of 

Lévy flight. Lévy flight is a random walk where the step size is 

distributed according to the heavy tailed distribution. After a 

large number of steps, the distance from the origin of the flight 

tends to a stable distribution. 
The CS algorithm has been modified by involving the 

information exchange between top eggs, or the best solutions, a 

concept similar to elitism in GA [5]. Its modified version is 

also hybridized with Conjugate Gradient Method to train 

Multi-Layer Perceptrons in [6]. It is applied for optimum 

design of spaces trusses [7] and for the selection of optimal 

machining parameters in milling operations [8].  The fact that, 

if a cuckoo’s egg is very similar to a host’s egg then it is less 

likely to be discovered, is used to modify the random walk in 

the algorithm in somewhat biased way [9]. It is also improved 

by varying its parameters relative to the generation number 
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[10] and it is applied to train feedforward neural networks to 

classify the iris and breast cancer data sets [11].Anew search 

strategy based on orthogonal learning strategy to enhance the 

exploitation ability of the basic cuckoo search algorithm is 
presented in [12].Orthogonal design is used to produce all 

possible combinations of levels for a complete factorial 

experiment. The basic idea of orthogonal design is to utilize 

the properties of the fractional experiment for the efficient 

determination of the best combination of levels. Experimental 

results by the CS algorithm with this new search strategy are 

concluded as better than or at least comparable with the 

existing quality results. The algorithmic concepts of the CS, 

PSO, DE and ABC algorithms have been analyzed in 

[13].TheEmpirical results in this paper reveal that the problem 

solving CS algorithm is close to DE algorithm and the CS and 

DE algorithms supply more robust and precise results than the 
PSO and ABC algorithms. 

Various applications of cuckoo search algorithm and some 

other optimization algorithms are presented by many 

researchers. In [14]an attempt is made to develop an artificial 

neural network (ANN) based model for CO2 laser cutting of 

stainless steel. The laser cutting experiment is planned and 

conducted according to Taguchi’s L27 orthogonal array 

considering the four laser cutting parameters namely laser 

power, cutting speed, assist gas pressure and focus position. In 

order to obtain minimum surface roughness, the cutting 

parameters are optimized by integrating the ANN model with 
the Cuckoo Search algorithm. In one another application 

optimization of ATM cash is investigated using Genetic 

Algorithm [15]. Stocking cash in ATMs entails costs that can 

be broadly divided into two contributions, one financial cost 

and other operational costs. The financial cost is mainly due to 

the unused stock rated by annual passive interests.  The 

operational costs are mainly due to time to perform and 

supervise the task, maintenance, out of service and risk of 

robbery. Therefore it is desirable to perform an efficient refill 

of ATMs so that the daily amount of stocked money can be 

minimized but same time assuring good cash dispensing 

service. Based on surveys, some important factors are taken 
into consideration and GA is implemented to optimize the cash 

it ATMs. A comparative study of performance of three 

algorithms GA, PSO and CS in clustering problems is done in 

[16]. Also, it is observed that under given set of parameters the 

CS algorithm works efficiently for majority of data sets under 

consideration and Lévyflights plays an important role. The 

main version of cuckoo search algorithm has been utilized to 

solve many connected problems. Morover, a discrete binary CS 

algorithm has been developed and implemented efficiently on 

knapsack 0-1 problems as in [17].  An extensive comparative 

study of performance of the CS algorithm using some standard 
test functions, newly designed stochastic test functions and the 

constrained design optimization problems like welded beam 

design and spring design is done in [18]concluding far better 

results than the best results obtained by efficient PSO.Feature 

selection is an optimization technique used in face recognition 

technology. Feature selection removes the irrelevant, noisy and 

redundant data thus leading to the more accurate recognition of 

the face from the data base. Observing that the results of CS 

algorithm are better than PSO and ACO, a proposal of 

applying the CS algorithm for feature selection is presented in 

[19]. 

In order to generate random numbers with symmetric 

Lévydistribution, some algorithms like Mantegna’s algorithm, 
rejection algorithm and MuCulloch’s algorithm exist [3, 20]. 

The performance of these algorithms for Lévy noise generation 

has been compared in [3]. It shows that McCulloch’s algorithm 

outperforms the other two. The natural question arises is that 

how the performance of Cuckoo Search algorithm is affected if 

McCulloch’s Algorithm is used to generate the Lévy flight 

instead of Mantegna’s algorithm. Moreover, it is also 

interesting to check the effect of adding a term similar to Local 

Best in PSO algorithm while generating the cuckoo population. 

Thoroughly examining the implementation of the CS algorithm 

[21], some other implementation oriented changes have 

become apparent for the possible betterment of the algorithm. 
In this paper, we have implemented the Cuckoo Search 

algorithm with Mantegna’s algorithm, the simplified version of 

Mantegna’s algorithm, and the McCulloch’s algorithm, 

incorporated into it one by one to generate the Lévy flights. For 

each of these cases, the algorithm is implemented on ten 

benchmark problems A to J.Moreover, various changes have 

been made in the algorithm and extensive experiments are 

carried out to test them on the same benchmark problems. The 

outputs obtained are analyzed and tabulated [Table 1].The 

algorithm is implemented in MATLAB. 

The remainder of this paper is organized as follows. 
Section II describes the working of all the algorithms used in 

this work. A list of benchmark problems on which our testing 

of algorithm has focused is given in section III, followed by the 

implementation of the algotirhm in section IV. The results 

obtained are discussed in section V. Sections VI and VII 

contain conclusion and future work respectively.   

II. Working of the algorithms 

The Cuckoo Search algorithm via Lévy flights, Mantegna’s 

algorithm, its simplified version algorithm and McCulloch’s 

algorithm are described in the text follows. Discussion of other 

implementation oriented modifications are also mentioned 

thereafter. 

A. Cuckoo Search via Lévy flights 

Cuckoo Search algorithm is inspired by obligate brood 

parasitism of some cuckoo species by laying their eggs in to 

the nest of host birds. Those female parasitic cuckoos can 

imitate the colors and pattern of the eggs of the host species. 

For simplicity, it is assumed that there is only one egg at a time 

in a nest. The available egg in the host nest represents an initial 

solution. An egg laid by a cuckoo is representing a new 

solution generated by the algorithm. The algorithm works on 

the basis of following three assumptions: 

 A cuckoo chooses a nest randomly to lay the egg and at 

a time only one egg is laid by the cuckoo. 

 The best nests with the high quality egg (solution) will 

carry over to the next generations. 

 The total number of available host nests is fixed and 

the host bird can discover a cuckoo’s egg with a probability, 

𝑃𝑎 ∈  0, 1 . In this case, the host bird either destroys the egg or 
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destroys the nest completely and builds up a new nest 

somewhere else. 

The third assumption can be approximated as a fraction 

Paof the total n nests that are replaced by the new nests having 

a new random solution. When generating new 

solution𝑿 𝒕+𝟏 for, say, a cuckoo 𝒊,a Lévy flight is performed as 

𝑿𝒊
 𝒕+𝟏 = 𝑿𝒊

 𝒕 + 𝜶 ⊕ 𝑳é𝒗𝒚 𝝀  

where α > 0 is the step size which should be related to the 

scales of the problem of interests. In most cases, α = 1 is used. 

This equation is stochastic equation for random walk. In 

general, a random walk is a Markov chain whose next location 

depends only on the current location and the transition 

probability. The product ⊕ means entrywise 
multiplications.The Lévy flight essentially provides a random 

walk while the random step length is drawn from a Lévy 

distribution  

Lévy~ 𝑢 = 𝑡−𝜆 ,    (1 < 𝜆 ≤ 3) 

which has an infinite variance with an infinite mean. Here the 
steps essentially form a random walk process with a power law 

step length distribution with a heavy tail. 

The algorithm can also be extended to more complicated 

cases where each nest contains multiple eggs (a set of 

solutions).The algorithm can be summarized as per the 

following pseudo code: 

Begin 

The objective function is f(X), X=(x1, x2,…,xD). 

Generate an initial population with n solution 

vectors namely Xi, i=1,2,…,n. 

While (t<Max interactions) and (termination condition 

not achieved) 
Generate a new solution vector Xnewvia Lévy 

flight andevaluate its fitness say Fnew. 

Randomly select a vector say Xjfrom the current 

population and compare the function values  

f(Xj) and  f(Xnew). 

If  f(Xnew)<f(Xj), replace Xjby Xnew. 

A fraction of the Pa of the worse nests is abandoned  

and new nests are generated. 

Keep the quality solutions and find the current  

best solution vector 

End while 
Post process and results 

End 

B. Mantegna’s algorithm 

Mantegna’s algorithm [22] produces random numbers 

according to a symmetric Lévy stable distribution. It was 

developed by R. Mantegna. The algorithm needs the 

distribution parameters 𝛼𝜖 0.3, 1.99 , 𝑐 > 0, and the number of 

iterations, 𝑛. It also requires the number of points to be 

generated. When not specified, it generates only one point. If 

an input parameter will be outside the range, an error message 

will be displayed and the output contains an array of NaNs 

(Not a number). The algorithm is described in following steps: 

𝑣 =
𝑥

 𝑦 
1

𝛼

 

wherex and y are normally distributed stochastic variables. But 

x is calculated as 𝑥𝜎𝑥 , where 

𝜎𝑥 𝛼 =  
Γ 𝛼 + 1 𝑠𝑖𝑛  

𝜋𝛼

2
 

Γ  
𝛼+1
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 𝛼2
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1

𝛼

, 𝜎𝑦 = 1 

The resulting distribution has the same behavior of aLévy 

distribution for large values of random variable   𝑣 ≫ 0 . 
Using the nonlinear transformation 

𝑤 =   𝐾 𝛼 − 1 𝑒
− 𝑣 

𝐶(𝛼) + 1 𝑣, 

the sum 𝑧𝑐𝑛 =
1

𝑛
1

𝛼 
 𝑤𝑘

𝑛
1  quickly converges to aLévy stable 

distribution. The convergence is assured by central limit 

theorem. The value of 𝐾 𝛼  can be obtained as 

𝐾 𝛼 =
𝛼Γ 

𝛼+1

2𝛼
 

Γ  
1

𝛼
 

 
𝛼Γ  

𝛼+1
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𝜋𝛼
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1
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Also, 𝐶(𝛼) is the result of a polynomial fit to the values 

tabulated in [14], obtained by resolving the following integral 

equation: 

1

𝜋𝜎𝑥

 𝑞
1

𝛼

∝

0

𝑒𝑥𝑝  −
𝑞2

2
−

𝑞
2

𝛼  𝐶(𝛼)2

2𝜎𝑥
2

 𝑑𝑞 = 

1

𝜋
 𝑐𝑜𝑠

∝

0

  
 𝐾 𝛼 − 1 

𝑒
+ 1 𝐶(𝛼) 𝑒𝑥𝑝 −𝑞𝛼 𝑑𝑞 

The required random variable is given by 𝑧 = 𝐶
1

𝛼  𝑧𝑐𝑛 . 

C. Simplified version algorithm 

Mantegna’s algorithm uses two normally distributed 

stochastic random variables to generate a third random variable 

which has the same behavior of a Lévy distribution for large 

values of the random variable. Further it applies a nonlinear 

transformation to let it quickly converge to a Lévy stable 

distribution. However, the difference between the Mantegna’s 

algorithm and its simplified version used by Xin-She Yang and 

Saush Deb as a part of cuckoo search algorithm is that the 

simplified version does not apply the aforesaid nonlinear 

transformation to generate Lévy flights. It uses the entry-wise 
multiplication of the random number so generated and distance 

between the current solution and the best solution obtained so 

far (which look similar to the Global best term in PSO) as a 

transition probability to move from the current location to the 

next location to generate a Markov chain of solution vectors. 

However, PSO also uses the concept of Local best. 

Implementation of the algorithm is very efficient with the use 

of Matlab’s vector capability, which significantly reduces the 

running time.  The algorithm starts with taking one by one 

solution from the initial population and then replacing it by a 

new vector generated using the steps described below. 

𝑠𝑡𝑒𝑝𝑠𝑖𝑧𝑒 = 0.01 ∗ 𝑣.∗ (𝑠 − 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑏𝑒𝑠𝑡) 

𝑛𝑒𝑤𝑠𝑜𝑙𝑛 = 𝑜𝑙𝑑𝑠𝑜𝑙𝑛 + 𝑠𝑡𝑒𝑝𝑠𝑖𝑧𝑒.∗ 𝑧 
 

where𝑣 is same as Mantegna’s algorithm above with 𝜎𝑥  

calculated for α =
3

2
.zis again a normally distributed stochastic 

variable. 
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D. McCulloch’s algorithm 

The algorithm was developed by J. H. McCulloch. It is 

based on an explicit formula to generate random numbers from 

a Lévy process, as a function of two independent variables 𝑤 

and 𝜑 with uniform distribution in the range  −
𝜋

2
 ,

𝜋

2
 and 

standard exponential distribution, respectively is given by 

𝑐
𝑁1𝑁2

𝐷
+ 𝜏 

where 

𝑁1 = 𝑠𝑖𝑛  𝛼𝜑 + 𝑡𝑎𝑛−1  𝛽𝑡𝑎𝑛 𝛼𝜋 2     

𝑁2 =  𝑐𝑜𝑠   1 − 𝛼 𝜑 − 𝑡𝑎𝑛−1  𝛽𝑡𝑎𝑛 𝛼𝜋 2     

1

𝛼
−1

 

𝐷 =  𝑐𝑜𝑠  𝑡𝑎𝑛−1  𝛽𝑡𝑎𝑛 𝛼𝜋 2     

1

𝛼  𝑐𝑜𝑠𝜑 
1

𝛼𝑤
1

𝛼
−1

 

It returns an  𝑛 × 𝑚 matrix of random numbers. The 

required parameters are characteristic exponent 𝛼, skewness 

parameter 𝛽, scale 𝑐, and location parameter 𝜏. The minimum 

value of 𝛼 is 0.1 because of the non-negligible possibility of 

overflow. When an input is not in the valid range, the resultant 

matrix contains NaNs. Here the symmetric case of 𝛽 = 0 is 

considered. In this case, the algorithm uses the following 

formula: 

𝑥 = 𝑐  
𝑐𝑜𝑠   1 − 𝛼 𝜑 

𝑤
 

1

𝛼
−1

sin⁡(𝛼𝜑)

cos⁡(𝜑)
1

𝛼

+ 𝜏 

Two special cases are handled separately: 

𝛼 = 2 (Gaussian case). In this case, 

𝑥 = 𝑐2 𝑤 sin 𝜑 +  𝜏 
𝛼 = 1 (Cauchy case). In this case, 

𝑥 = 𝑐 𝑡𝑎𝑛 𝜑 +  𝜏 

E. Simpified version including P-best 

In the simplified version algorithm, the concept of global 
best (G-best) is used in similar manner as in PSO algorithm. 

But it does not include the current best vector (P-best) used in 

PSO for generating the new solutions. We have included both 

the G-best and the P-best in the simplified version algorithm to 

generate the new solutions.    

F. Simplified version including P-best and with Pa<0.25 

In generating the new nests (solution vectors), the code 

given in [21] modifies the 75% components of the total vectors 

in a generation, by considering the probability𝑃𝑎 = 0.25. We 

changed the probability Pa so that now only 25% components 

of total vectors in a generation are modified to form the new 

solutions. Other values of probability can also be tried for.Of 

course, the algorithm again includes the P-best.    

G. Simplified version including P-best and modifying all 

components of 75% vectors 

The simplified version algorithm changes 75% of the 

components of the total vectorsin a generation to producethe 

new solutions. A vector represents a nest. If only some of the 

components of a vector are modified then it is not relevant to 

the actual philosophy of the algorithm which says that the 

entire nest is either being survived or destroyed as mentioned 

in the third assumption.So we made some changes in the 
algorithm which, rather than some components, actually 

modifies all components of 75% of the vectors in a generation, 

leaving 25% unchanged.  

H. Simplified version including P-best and modifying all 

components of 25% vectors 

This variant is similar to algorithm G with the modification 

that all components of 25% of the vectors in a generation are 

changed to produce the new solutions. 

III. Benchmark Problems 

We have implemented the algorithms on the following 

benchmark problems,  A to J [23, 24, 25]. 

A. Sphere function 

𝑓 𝑋 =  (𝑥𝑖 − 1)2

𝐷

𝑖=1

 

Search space:𝑥𝑖 ∈  −5, 5 , 𝑖 = 1,2,… , 𝐷 

Global minimum: 0 at (1,1,…,1) 

B. Ackley function 

𝑓 𝑋 = −20𝑒𝑥𝑝

 
 

 
−0.2 

1

𝐷
 𝑥𝑖

2

𝐷

𝑖=1
 
 

 
− 

𝑒𝑥𝑝  
1

𝐷
 𝑐𝑜𝑠 2𝜋𝑥𝑖 

𝐷

𝑖=1

 + 20 + 𝑒 

Search space:𝑥𝑖 ∈  −5, 5 , 𝑖 = 1,2,… , 𝐷 

Global minimum: 0at 𝑋= (0,0,…,0) 

C. Dixon and Price function 

𝑓 𝑋 =  𝑥1 − 1 2 +  𝑖 2𝑥𝑖
2 − 𝑥𝑖−1 

2
𝐷

𝑖=2

 

Search space:𝑥𝑖 ∈  0, 2 , 𝑖 = 1,2,… , 𝐷 

Global minimum: 0 at𝑋 =  𝑥1 , 𝑥2 ,… , 𝑥𝐷  

where, 𝑥𝑖 = 2
− 

2𝑖−2

2𝑖
 

, 𝑖 = 1,2,… ,𝐷. 

D. Griewank function 

𝑓 𝑋 =
1

4000
 𝑥𝑖

2

𝐷

𝑖=1

−  𝑐𝑜𝑠  
𝑥𝑖

 𝑖
 

𝐷

𝑖=1

+ 1 

Search space:𝑥𝑖 ∈  −5, 5 , 𝑖 = 1,2,… , 𝐷 

Global minimum: 0 at X = (0,0,…,0) 

E. Step function 

𝑓 𝑋 =   𝑥𝑖 + 0.5 

𝐷

𝑖=1

 

Search space:𝑥𝑖 ∈  −5, 5 , 𝑖 = 1,2,… , 𝐷 
Global minimum: 0 atX= (-0.5, -0.5,…,-0.5) 

F. Levy function 

𝑓 𝑋 = 𝑠𝑖𝑛2 𝜋𝑦1 + 

   𝑦𝑖 − 1 2 1 + 10𝑠𝑖𝑛2 𝜋𝑦𝑖 + 1   

𝐷−1

𝑖=1

+ 

 𝑦𝐷 − 1 2 1 + 10𝑠𝑖𝑛2 2𝜋𝑦𝐷  ,  
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where,𝑦𝑖 = 1 +
𝑥𝑖−1

4
, 𝑖 = 1,2, … ,𝐷 

Search space:𝑥𝑖 ∈  −10, 10 , 𝑖 = 1,2,… , 𝐷 

Global minimum: 0 at X = (1,1,…,1) 

G. Generalized Schwfel 2.6 function 

𝑓 𝑋 = 418.9829𝐷 −  𝑥𝑖𝑠𝑖𝑛  𝑥𝑖 

𝐷

𝑖=1

 

Search space:𝑥𝑖 ∈  300, 500 , 𝑖 = 1,2,… , 𝐷 

Global minimum: 0 at (420.9687, 420.9687,…, 420.9687) 

H. Generalized Rozenbrock function 

𝑓 𝑋 =   100 𝑥𝑖
2 − 𝑥𝑖+1 

2 +  𝑥𝑖 − 1 2 

𝐷−1

𝑖=1

 

Search space:𝑥𝑖 ∈  −5, 5 , 𝑖 = 1,2,… , 𝐷 
Global minimum: 0 at (1,1,…,1) 

I. Rastrigin function 

𝑓 𝑋 = 10𝐷 +   𝑥𝑖
2 − 10𝑐𝑜𝑠 2𝜋𝑥𝑖  

𝐷

𝑖=1

 

Search space:𝑥𝑖 ∈  −0.9, 0.9 , 𝑖 = 1,2,… ,𝐷 
Global minimum: 0 at X = (0,0,…,0) 

J. Weierstrass function 

𝑓 𝑋 =     𝑎𝑘𝑐𝑜𝑠 2𝜋𝑏𝑘 𝑥𝑖 + 0.5   

𝑘𝑚𝑎𝑥

𝑘=0

 

𝐷

𝑖=1

 

−𝐷   𝑎𝑘𝑐𝑜𝑠 2𝜋𝑏𝑘0.5  

𝑘𝑚𝑎𝑥

𝑘=0

 

a=0.5, b=3, kmax=20. 

Search space:𝑥𝑖 ∈  −0.5, 0.5 , 𝑖 = 1,2,… ,𝐷 

Global minimum:0at (0,0,…,0) 

IV. Implementation of the algorithms 

The Cuckoo search algorithm, with each of the three above 

mentioned algorithms incorporated into it one by one to 

generate Lévy flight, is run 100 times. The population size is 

25 and all the benchmark problems on which the algorithms 

are implemented are 15 dimensional unconstrained 

minimization problems. In Mantegna’s algorithm the 

parameters are set as α =
1

2
, 𝑐 = 1.The simplified version 

algorithm uses parameterα =
3

2
. McCulloch’s algorithm takes 

the parameters𝛼 = 0.5, 𝛽 = 0 and 𝑐 = 1.Also the pseudo code 

for the cuckoo search algorithm is given sequentially, but in 

order to take advantage of Matlab’s vector capability, all new 

25 solution vectors are generated at a time and then they get 

replaced one by one by better solutions. 

V. Results obtained 

With all the modifications B to H of the algorithm described 

above, Cuckoo Search algorithm is implemented on above 

mentioned benchmark problems A to J. The results obtained 

are analyzedin terms of the best and the worst solution, mean 

and the standard deviation of the optimum values obtained in 

100 runs, the number of optimum values obtain within one 

standard deviation interval, and the time of execution for 100 

runs.The Count1 and Count2 variables in the table are 

showing, out of 100 runs how many optimum values are 

obtained within one and two standard deviation interval from 

the actual global minimum.The tabulated outputs are shown in 
the table1 in appendix. 

VI. Conclusion 

From the outputs obtained, we see that McCulloch algorithm 

and simplified version of Mantegna’s algorithm are more 

efficient than Mantegna’s algorithm in terms of runtime. 

Further,addition of the Local Best term in the simplified 

version algorithm gives better results in many problems and 
comparable results in others with slight increase in the run 

time. However, replacing entire vector instead of some of its 

components does not reveal any significant improvement in the 

result, though it is preferable according to the base of the 

algorithm. 

VII. Future work 

As we have seen that the Cuckoo Search algorithm with 
simplified version of Mantegna’s algorithm to generate Lévy 

flight is improved by adding the Local Best term. This 

improved version of CS can also be applied to constrained 

optimization problems to check its effect on the performance. 

At present, a fraction of the nests are replaced randomly. 

Instead, the poorer solutions can be prioritized for removal. 

Similarly, the probability of removal can also be varied and its 

appropriate value can be sought.  
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Appendix 

TABLE 1.Analysis of Outputs 

A. Sphere function 

 

Algorithm Best Worst Average Std. dev. Avg. No. 

of iterations 

Count1 Count2 Elapsed 

time (S) 
B 3.2567e- 

006 
 

9.9861e- 
006 

 

8.7945e- 
006 

1.1457e- 
006 

30292 80 19 1879.80 

Solution vector corresponding to the best optimum value for Mantegna’s Algorithm 
1.0004    0.9997    0.9999    0.9993    1.0003    0.9999    0.9998    1.0008    0.9998    0.9996    0.9990   0.9998    1.0001    0.9999     

0.9993 

C 4.0631e-
006 

9.9896e-006 8.7270e-
006 

1.1517e-006 25054 75 

 

23 59.01 

1.0002    1.0002    1.0005    1.0004    0.9989    1.0009    0.9998    1.0007    0.9999    0.9990    1.0001    1.0003  0.9998    0.9999 
0.9997 

D 4.8812e-
006 

 

9.9891e-
006 

8.7563e-
006 

 

1.0407e-
006 

28903 
 

72 27 51.53 

1.0012    0.9999    1.0004    0.9998    0.9995    1.0009    0.9993    1.0002    0.9997    1.0011    0.9998    1.0006    1.0001    0.9999    
0.9997 

E 4.0289e-
006 

9.9999e-
006 

8.6139e-
006 

1.2774e-
006 

22709 75 24 99.21 

1.0002    1.0002    1.0005    0.9992    1.0013    1.0003    0.9998    1.0005    0.99950.9998    1.0004    1.0004    0.9995    1.0003    

0.9999 
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F 5.2293e-
006 

9.9980e-
006 

8.8852e-
006 

1.0104e-
006 

26732 77 22 99.71 

0.9993    1.0000    0.9996    0.9995    0.9999    0.9995    1.0001    0.9992    0.99990.9995    1.0003    0.9991    1.0004    1.0014    
1.0004 

G 5.6880e-
006 

5.1930e-
005 

1.0429e-
005 

5.1315e-
006 

54069 94 4 213.36 
 

1.0003    0.9997    0.9996    0.9999    0.9997    0.9997    0.9998    0.9990    0.99981.0000    0.9990    1.0016    1.0009    1.0001    
0.9999 

H 6.1369e-
006 

1.3901e-
005 

9.4048e-
006 

1.0205e-
006 

76137 86 11 290.14 

1.0003    1.0007    1.0001    0.9992    1.0007    1.0009    0.9994    1.0003    0.99931.0001    0.9985    1.0006    1.0000    0.9998    
1.0000 

C. Dixon and Price function 

 
B 4.0070e-

006 

 

9.9880e-
006 

 

8.7633e-
006 

 

1.2430e-
006 

115242 
 

83 15 7199.48 

0.9999    0.7071    0.5946    0.5452    0.5221    0.5107    0.5053    0.5026    0.5013    0.5006    0.5002    0.5001    0.5000    0.4999    
0.5000 

C 5.2696e-
006 

9.9917e-
006 

 

8.8244e-
006 

 

1.0972e-
006 

71392 73 26 201.72 

0.9998    0.7072    0.5947    0.5452    0.5221    0.5109    0.5056    0.5031    0.5015     0.5007    0.5004    0.5001    0.5000    0.5000    
0.5000 

B. Ackley function 

B 6.9467e-
006 

9.9980e-
006 

 

9.3813e-
006 

6.1186e-
007 

57215 84 14 3598.08 

1.0e-005 * 
(0.3375   -0.3166    0.2427   -0.0699    0.0433   -0.0203    0.0114   -0.0698    0.2428    0.0054    0.2222    0.0587   -0.1648   -0.1370    

-0.0970) 
C 5.7285e-

006 
9.9999e-
006 

9.2924e-
006 

7.5327e-
007 

52180 89 10 169.23 

1.0e-005 * 
(-0.0387   -0.2867   -0.1907    0.0663   -0.0479   -0.1729   -0.0042    0.0668   -0.1799   -0.0315    0.2273 -0.0633    0.1211    0.1667   

-0.1226) 
D 6.8473e-

006 
9.9936e-
006 

9.2404e-
006 

6.7318e-
007 

55348 75 23 162.86 

1.0e-005 * 
(-0.0780   -0.0021    0.2249   -0.0665    0.0855    0.0770   -0.0320   -0.3295   -0.1894   -0.1581   -0.0827    0.1628    0.1942   -0.3411    

0.0857) 
E 7.8095e-

006 

9.9964e-

006 

9.3539e-

006 

5.6470e-

007 

53849 63 37 309.78 

1.0e-005 * 
(-0.0992    0.1977    0.2953    0.2978    0.0845    0.0079    0.0096    0.2059    0.0914 -0.2830   -0.1501    0.2485    0.3192   -0.1491    

0.0202) 
F 7.8898e-

006 
9.9996e-
006 

9.4820e-
006 

4.6686e-
007 

78295  69   30 370.46 

1.0e-005 * 
(0.2066    0.2275   -0.1172   -0.0067    0.2004    0.2766    0.0454    0.1715   -0.0165 -0.4995    0.2424   -0.1002    0.0516    0.0049   

 -0.0771) 
G 1.4341e-

005 
0.0085 0.0016 0.0017 250050 87 10 1251.39 

1.0e-005 * 
(-0.3341    0.2100   -0.1918    0.0968   -0.0504    0.2523   -0.4797    0.2357    0.0813  -0.4336    0.5124    0.0701    0.1220    0.2327   -

0.9181) 
H 4.1774e-

005 
0.0049 8.1326e-

004 
8.7564e-
004 

250050 87 10 1190.88 

1.0e-004 * 
(0.1513   -0.0048    0.0391   -0.0276    0.1309    0.2200   -0.0659    0.1526    0.00370.1111    0.0178   -0.1662   -0.0196   -0.0047   -

0.0669) 
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D 4.5957e-
006 

 

9.9951e-
006 

 

8.8336e-
006 

 

9.3460e-
007 

112070 66 33 206.76 

0.9989 0.7066    0.5942    0.5451    0.5220    0.5110    0.5053    0.5025    0.5013    0.5007    0.5004    0.5002    0.5001    0.5000    
0.5001 

E 6.0701e-
006 

9.9852e-
006 

9.1036e-
006 

8.3417e-
007 

50227 81 18 210.48 

1.0009    0.7074    0.5948    0.5452    0.5224    0.5111    0.5057    0.5027    0.50130.5007    0.5002    0.5001    0.5000    0.5000    
0.5000 

F 6.2179e-
006 

9.9997e-
006 

9.0701e-
006 

9.0783e-
007 

51948 85 18 180.25 

0.9997    0.7069    0.5947    0.5453    0.5220    0.5109    0.5051    0.5024    0.50110.5004    0.5001    0.5000    0.5000    0.4999    

0.4999 
G 8.0211e-

006 
1.4276e-
004 

1.6982e-
005 

2.0736e-
005 

110125 93 5 409.53 

1.0008    0.7073    0.5946    0.5453    0.5221    0.5109    0.5054    0.5029    0.5015 0.5006    0.5006    0.5002    0.5001    0.5001    
0.5000 

H 6.6130e-
006 

4.0624e-
005 

1.0180e-
005 

3.9246e-
006 

106177 93 5 384.50 

1.0010    0.7073    0.5945    0.5451    0.5224    0.5111    0.5056    0.5027    0.5015 0.5007    0.5003    0.5001    0.5001    0.5001    

0.5002 
 

D. Griewank function 

 
B 5.7618e-

006 
 

9.9869e-
006 

 

8.9680e-
006 

9.0289e-
007 

 

74986 71 28 4644.76 

-0.0005    0.0004   -0.0012    0.0022    0.0030    0.0025    0.0030   -0.0035   -0.0007  -0.0044    0.0024   -0.0033   -0.0014   -0.0014    
0.0014 

C 3.5171e-
006 

9.9939e-
006 

 

8.8725e-
006 

1.1396e-
006 

51288 86 12 185.91 

-0.0004   -0.0022   -0.0006   -0.0002   -0.0010   -0.0003   -0.0016   -0.0013   -0.0012   -0.0009   -0.0043   -0.0017    0.0043   -0.0002   
-0.0007 

D 4.5841e-
006 

 

9.9939e-
006 

 

9.0155e-
006 

9.3623e-
007 

 

80841 
 

81 18 197.59 

0.05 0.0009    0.0000    0.0024    0.0001    0.0011   -0.0006   -0.0006    0.0015   -0.0031    0.0059    0.0046   -0.0000    0.0029    0.0011 

E 5.0555e-
006 

9.9961e-
006 

8.5652e-
006 

1.0888e-
006 

34027 72 27 187.47 

0.0019   -0.0001   -0.0005    0.0005    0.0022    0.0031   -0.0013   -0.0032   -0.0019 -0.0007    0.0014   -0.0001    0.0036    0.0011   -

0.0028 
F 5.1481e-

006 
9.9938e-
006 

8.8811e-
006 

1.0742e-
006 

33657 81 16 155.46 

-0.0005   -0.0002    0.0004    0.0031    0.0018    0.0054   -0.0000   -0.0013    0.00220.0002    0.0022   -0.0025    0.0007    0.0013    
0.0002 

G 4.9378e-
006 

9.9996e-
006 

9.2825e-
006 

8.4246e-
007 

33595 88 10 162.55 

0.0007   -0.0002   -0.0030    0.0040   -0.0001    0.0015   -0.0007   -0.0023    0.00100.0000    0.0014   -0.0022   -0.0008    0.0001    

0.0021 
H 5.5236e-

006 
9.9919e-
006 

8.9231e-
006 

9.7572e-
007 

79051 78 20 369.77 

0.0011   -0.0001   -0.0008    0.0005    0.0007    0.0023    0.0006   -0.0010    0.0035-0.0060   -0.0008   -0.0038   -0.0013   -0.0015   -
0.0053 

 

E. Step function 

 

B 5.7994e-
006 

 

9.9997e-
006 

 

9.3504e-
006 

 

7.1027e-
007 

64890 87 11 49324.45 

-0.5000   -0.5000   -0.5000   -0.5000   -0.5000   -0.5000   -0.5000   -0.5000   -0.5000   -0.5000   -0.5000   -0.5000   -0.5000   -0.5000   
-0.5000 
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C 7.0603e-
006 

9.9921e-
006 

 

9.3225e-
006 

6.6777e-
007 

53039 83 15 119.74 

-0.5000   -0.5000   -0.5000   -0.5000   -0.5000   -0.5000   -0.5000   -0.5000   -0.5000   -0.5000   -0.5000   -0.5000  -0.5000   -0.5000   
-0.5000 

D 6.0982e-
006 

 

9.9998e-
006 

 

9.3788e-
006 

 

6.3441e-
007 

63368 
 

90 9 86.10 

-0.5000   -0.5000   -0.5000   -0.5000   -0.5000   -0.5000   -0.5000   -0.5000   -0.5000   -0.5000   -0.5000   -0.5000   -0.5000   -0.5000   
-0.5000 

E 6.1740e-
006 

9.9913e-
006 

9.2191e-
006 

7.0416e-
007 

56561 80 18 189.73 

-0.5000   -0.5000   -0.5000   -0.5000   -0.5000   -0.5000   -0.5000   -0.5000   -0.5000 -0.5000   -0.5000   -0.5000   -0.5000   -0.5000   
-0.5000 

F 6.5182e-
006 

9.9978e-
006 

9.3144e-
006 

7.4204e-
007 

67043 83 16 230.05 

-0.5000   -0.5000   -0.5000   -0.5000   -0.5000   -0.5000   -0.5000   -0.5000   -0.5000 -0.5000   -0.5000   -0.5000   -0.5000   -0.5000   
-0.5000 

G 3.5900e-
004 

0.0237 0.0055 
 

0.0040 250050 75 24 864.14 

-0.5000   -0.5000   -0.5001   -0.4999   -0.5000   -0.4999   -0.5000   -0.5000   -0.5000-0.4999   -0.5000   -0.5000   -0.5000   -0.5000   -
0.5000 

H 3.6564e-
004 

0.0177 0.0044 0.0030 250050 81 17 892.24 

-0.5000   -0.4998   -0.5000   -0.5000   -0.5000   -0.5000   -0.5000   -0.5000   -0.5000 -0.5000   -0.5000   -0.5000   -0.4998   -0.5000   
-0.5000 

F. Levy function 

 
B 5.2459e-

006 
 

9.9702e-

006 
 

8.6432e-

006 
 

1.1694e-

006 
 

49029 

 

67 33 6137.60 

0.9999    1.0012    0.9993    1.0001    1.0006    0.9988    0.9992    0.9994    0.9994     0.9992    1.0000    0.9998    0.9986    1.0004    
0.9955 

C 4.2144e-
006 

9.9917e-
006 

 

8.8422e-
006 

 

1.2086e-
006 

52165 
 

85 13 338.76 

1.0000    0.9993    0.9988    0.9991    0.9996    1.0005    0.9990    0.9992    1.0005    0.9995    1.0002    0.9988    1.0007    0.9996    

1.0025 

D 6.2420e-
006 

9.9940e-
006 

 

8.8758e-
006 

 

9.2807e-
007 

40731 68 32 228.21 

0.9992 0.9996    1.0018    1.0005    0.9985    0.9991    0.9998    0.9996    0.9988    0.9994    0.9994    1.0013    0.9996    0.9998    
0.9994 

E 3.6972e-
006 

9.9763e-
006 

8.9246e-
006 

1.1450e-
006 

49005 86 12 345.55 

0.9997    1.0001    1.0005    1.0001    1.0003    0.9998    1.0013    0.9988    1.00041.0008    0.9991    1.0006    1.0000    0.9992    
1.0028 

F 5.7284e-
006 

9.9887e-
006 

8.7916e-
006 

1.0038e-
006 

51325 69 30 368.60 

0.9994    1.0007    0.9993    1.0005    0.9994    1.0004    1.0002    0.9975    1.00041.0006    1.0007    1.0010    1.0008    0.9999    
0.9991 

G 7.2409e-
006 

1.3956e-
004 

1.7626e-
005 

2.0639e-
005 

125180 91 5 2142.80 

1.0004    1.0004    1.0009    1.0014    0.9984    0.9996    0.9999    0.9990    1.0002 0.9984    1.0003    1.0010    1.0000    0.9994    
1.0053 

H 7.0236e-
006 

0.0010 2.1247e-
005 

1.0299e-
004 

168845 99 0 1291.43 

0.9988    0.9993    0.9989    1.0003    0.9987    1.0011    0.9995    0.9997    1.00061.0002    1.0001    1.0000    1.0023    0.9997    
0.9991 

G. Generalized Schwfel 2.6 function 

 
B 1.9095e-

004 
 

1.9100e-

004 
 

1.9099e-

004 
 

1.1584e-

008 

47138 

 

75 25 2830.24 
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420.9688  420.9689  420.9688  420.9685  420.9690  420.9690  420.9688  420.9687  420.9690  420.9686  420.9686  420.9687  
420.9686  420.9688  420.9689 

C 1.9095e-
004 

 

1.9100e-
004 

 

1.9099e-
004 

 

1.1858e-
008 

 

39452 
 

75 25 130.09 

420.9686  420.9689  420.9686  420.9689  420.9687  420.9689  420.9687  420.9689  420.9687  420.9686  420.9688  420.9688  
420.9686  420.9685  420.9684 

D 1.9095e-
004 

 

1.9100e-
004 

 

1.9099e-
004 

 

9.8004e-
009 

47343 70 29 117.09 

420.9686  420.9686  420.9687  420.9686  420.9684  420.9686  420.9689  420.9688  420.9688  420.9687  420.9688  420.9687  

420.9690  420.9689  420.9688 
E 1.9095e-

004 
1.9099e-
004 

1.9098e-
004 

7.9203e-
009 

40190 82 17 162.97 

420.9687  420.9687  420.9688  420.9690  420.9689  420.9690  420.9687  420.9688  420.9688420.9685  420.9688  420.9687  
420.9686  420.9687  420.9689 

F 1.9095e-
004 

1.9099e-
004 

1.9098e-
004 

8.5980e-
009 

49122 88 9 202.44 

420.9687  420.9688  420.9686  420.9685  420.9689  420.9688  420.9687  420.9688  420.9689420.9688  420.9687  420.9687  

420.9685  420.9688  420.9688 
G 1.9098e-

004 
0.0031 3.4766e-

004 
3.6788e-
004 

242458 94 4 1059.23 

420.9688  420.9690  420.9688  420.9688  420.9688  420.9690  420.9689  420.9690  420.9690420.9687  420.9690  420.9686  
420.9692  420.9687  420.9688 

H 1.9098e-
004 

5.4799e-
004 

2.3815e-
004 

7.7540e-
005 

245545 87 10 1048.99 

420.9690  420.9687  420.9687  420.9687  420.9687  420.9688  420.9684  420.9692  420.9687 420.9684  420.9688  420.9689  

420.9686  420.9686  420.9689 
 

H. Generalized Rozenbrock function 

 
B 5.9126e-

006 
 

9.9910e-
006 

 

9.0904e-
006 

 

8.9282e-
007 

180592 
 

82 17 10935.36 

1.0000    1.0000    1.0000    0.9999    0.9999    0.9999    1.0000    1.0000    1.0000    0.9999    0.9999    0.9998    0.9997    0.9994    
0.9988 

C 5.2451e-
006 

 

9.9989e-
006 

 

8.7796e-
006 

 

1.2255e-
006 

153918 
 

80 20 416.28 

1.0000    1.0001    1.0001    1.0001    1.0001    1.0000    1.0000    1.0000    1.0000    1.0000    1.0000    0.9999    0.9998    0.9996    
0.9992 

D 3.5767e-
006 

9.9861e-
006 

8.9595e-
006 

1.0825e-
006 

178861 
 

87 11 342.38 

1.0000   1.0000    1.0000    1.0000    1.0000    1.0000    1.0000    1.0000    1.0000    1.0000    0.9999    0.9999    0.9997    0.9993    
0.9987 

E 6.4442e-
006 

9.9679e-
006 

9.1012e-
006 

8.6809e-
007 

178901 85 14 604.98 

1.0000    1.0000    1.0000    1.0000    1.0000    1.0000    1.0001    1.0001    1.00001.0000    1.0001    1.0001    1.0002    1.0004    
1.0009 

F 3.3758e-
006 

9.9981e-
006 

8.9790e-
006 

1.3726e-
006 

2786167 88 9 9695.60 

1.0000    1.0000    1.0000    1.0000    1.0000    1.0000    1.0000    1.0000    1.00011.0001    1.0001    1.0001    1.0002    1.0004    
1.0010 

G 0.0049 4.2062 0.2952 0.5756 250050 96 2 915.23 
0.9997    0.9996    0.9980    0.9990    1.0010    1.0004    1.0003    1.0006    1.00181.0007    0.9985    0.9959    0.9912    0.9823    

0.9629 
H 0.0018 6.6209 0.6577 0.9572 250050 92 5 898.87 

0.9992    1.0000    1.0010    0.9999    1.0008    1.0007    0.9996    0.9999    1.00011.0006    1.0007    1.0012    1.0029    1.0044    
1.0080 

 

I. Rastrigin function 

 
B 5.1106e-

006 
 

9.9937e-
006 

 

8.8557e-
006 

 

1.1609e-
006 

148996 
 

85 14 17878.04 

1.0e-004 * 
(0.0172   -0.1457   -0.0348   -0.0636    0.7672    0.5330   -0.2948   -0.2397   -0.2673   -0.1595   -0.6657    0.6431    0.7142    0.2578   

-0.0454) 
C 5.7378e- 9.9983e- 8.9440e- 1.0180e- 117280 79 19 335.70 
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006 
 

006 
 

006 
 

006 
 

 

1.0e-004 *  
(-0.2367    0.6540   -0.5494   -0.3404   -0.6498   -0.4619    0.1200   -0.4927   -0.0967   -0.3726    0.1325   -0.3121   -0.4535    0.1428    

0.7801) 

D 5.1870e-
006 

9.9959e-
006 

8.8865e-
006 

 

1.0213e-
006 

 

150460 
 

79 20 308.76 

1.0e-004 *  
(0.5935    0.6347    0.2006    0.1777   -0.7579   -0.2038   -0.2997   -0.4182    0.0807    0.3540   -0.0561    0.5301   -0.0770    0.6941   -

0.0572) 
E 4.6449e-

006 

9.9969e-

006 

8.9237e-

006 

9.3483e-

007 

111777 73 25 388.30 

1.0e-004 * 
(-0.4289    0.3301    0.0170   -0.5071   -0.2502    0.4892   -0.0266   -0.0260    0.25200.9068    0.2732    0.1134   -0.4025   -0.2850    

0.5206) 
F 5.3737e-

006 
9.9841e-
006 

8.7024e-
006 

1.1478e-
006 

76599 71 29 273.38 

1.0e-004 * 
(0.6769   -0.6097    0.0239   -0.5833   -0.1260    0.1887    0.4944    0.1008   -0.38200.4067   -0.5938    0.1867    0.1583    0.6833    

0.2029) 
G 7.9957e-

006 
2.7199 0.1361 0.5957 209400 95 0 798.18 

1.0e-003 * 
(-0.0002    0.0348   -0.0592   -0.0554    0.0334    0.0338   -0.0575    0.0279   -0.0530-0.0350    0.0419    0.1259   -0.0298    0.0550    

0.0249) 
H 8.4836e-

006 
5.5275 1.3070 1.6926 249068 91 9 926.86 

1.0e-003 * 

( -0.0412    0.0288   -0.0448   -0.1092    0.1265    0.0195   -0.0147   -0.0286   -0.0054  -0.0458   -0.0712    0.0281    0.0224    0.0194    
0.0006 ) 

 

J. Weierstrass function 

 
B 5.6438e-

006 
 

9.9953e-
006 

 

9.0794e-
006 

 

9.1828e-
007 

 

152255 
 

83 15 13062.56 

1.0e-010* 
( -0.3072    0.1276    0.7386    0.3193    0.4202    0.1431   -0.1365   -0.1628    0.0228   -0.0438   -0.0686   -0.3037   -0.2694    0.9639   

-0.4146) 

C 5.0205e-
006 

 

9.9779e-
006 

 

8.8138e-
006 

 

1.1420e-
006 

 

176001 
 

84 15 5320.60 

1.0e-009 * 
(-0.0442   -0.0088    0.1289   -0.0145   -0.0030    0.0144    0.0120   -0.0303    0.0051   -0.0424    0.0067   -0.0068   -0.0249   -0.0119    

0.0372) 
D 6.0728e-

006 
 

9.9969e-
006 

 

9.1135e-
006 

 

8.1877e-
007 

 

152575 
 

72 26 4257.29 

1.0e-010 * 
( -0.4487   -0.3217   -0.2167   -0.1818    0.1428    0.0274   -0.1441    0.1908    0.3232   -0.3613    0.6083    0.8060    0.7243    0.3006    

0.0619) 
E 4.5747e-

006 
9.9979e-
006 

8.8024e-
006 

1.1522e-
006 

147530 81 16 4566.94 

1.0e-010 * 
( 0.6775   -0.0590   -0.1896   -0.0588    0.1378   -0.3148    0.4213   -0.1647   -0.1570 -0.5015    0.7391   -0.1638   -0.1933    0.0000   -

0.1660) 
F 5.5391e-

006 
9.9964e-
006 

9.1979e-
006 

9.0840e-
007 

165474 87 11 5090.04 

1.0e-009 * 
( 0.0110    0.0271    0.0178   -0.0601   -0.0174   -0.0079   -0.1396    0.0202   -0.03680.0235    0.0043   -0.0246    0.0053   -0.0267   -

0.0002) 

G 0.0827 1.3395 0.3113 0.2484 250050 89 7 8400.94 
1.0e-003 * 

(0.0006   -0.0189    0.0000   -0.0000    0.0006   -0.0030   -0.0000    0.0050   -0.1524   0.0000   -0.0339   -0.0002    0.4575   -0.0000    
-0.0621) 

H 0.0697 1.0990 0.2130 0.1132 250050 92 7 7697.71 
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1.0e-003 * 
(0.0081   -0.0009   -0.0017   -0.0004    0.1132    0.0001   -0.0022   -0.1394    0.0150-0.0342    0.0357    0.0002    0.0018   -0.0003    

0.0007) 

 


