
International Journal of Computer Information Systems and Industrial Management Applications.

ISSN 2150-7988 Volume 10 (2018) pp. 107-114

© MIR Labs, www.mirlabs.net/ijcisim/index.html

Dynamic Publishers, Inc., USA

Synchronized Multi-Load Balancer with Fault

Tolerance in Cloud

Sreelekshmi S1, K R Remesh Babu2

1 Department of Information Technology,

Government Engineering College Painavu, Idukki, Kerala, India

sreelekshmisuresh94@gmail.com

2 Department of Information Technology,

Government Engineering College Painavu, Idukki, Kerala, India

remeshbabu@yahoo.com

Abstract: Cloud computing offers on-demand access to a large

pool of shared resources at lower cost. The advantage of cloud

resources is that it can be easily provisioned, configurable, and

managed with minimal management efforts by the users. Proper

load balancing is an important task in maintaining fault

tolerance and Quality of Service (QoS). In the cloud, a load

balancer accepts incoming user requests, application specific

traffic and distributes this workload across multiple backend

processes using various methods. In a single load balancer system;

if the load balancer is down none of the user tasks can’t be

processed, even when the servers are ready to process the tasks.

In order to overcome this single point of failure, this paper

proposes a model that will avoid the single point of failure by

using multiple load balancers. In this method, service of one load

balancer can be borrowed or shared among other load balancers

when any correction is needed in the estimation of the load. This

will improves fault tolerance of the cloud eco system and assist in

cluster capacity management.

Keywords: Cloud computing, multiple load balancer, fault

tolerant, QoS, resource allocation.

I. Introduction

With the emergence of cloud computing more and more

business organizations moving towards cloud computing

platform due to its attractive features like low cost, easily

configurable, and virtually unlimited resource pool with

on-demand provisioning. The performance of the cloud eco

system enhances, if the scheduling of resources is properly

done. Resource scheduling with load balancing is one of the

best methods for improving the cloud performance. The

researchers are proposed several methods for optimal

scheduling of resources in the cloud.

Resource optimization [27] is the process of efficient

utilization of the available resources. It achieves desired

results within a time span and budget with minimum usage of

the resources. It has the following benefits:

 Increased revenue: The resource management solutions

ensuring the most valuable resources are to be used in a

maximum effect.

 Boost efficiency: The optimization leads to more efficient

utilization of the resources.

 High quality results: Optimization can reduce number of

errors and achieving better results.

 Security: The proper optimizations allow a secure

environment. That is the optimized results can reduce the

risk of data processing

Even though the features of clouds are attractive and there is in

need of a fault tolerant mechanism to undisrupted performance

of cloud services. Load balancing mechanism [28] can

improve the performance by efficient distribution of

workloads across multiple computing resources such as

computers, network links or disk drives. Tasks received by a

load balancer can be distributed to any cluster members.

Numerous techniques are available for the distribution of

workload across processors and the optimal scheduling leads

to the optimal result. The factors considered for these

optimization techniques are different. Some of the

optimization condition for the task distribution includes the

minimum response time, energy consumption and maximum

profit benefits. Load balanced cluster is an abstraction for a set

of identical processors, that host same set of services. A

simple cluster with a load balancer and respective cluster

members are shown in Fig. 1. Here n servers are managed by a

single load balancer. When this single load balancer fails or

down, the entire system functioning collapses due to the

non-availability of the load balancer cum dispatcher. This will

cause financial as well as loss of credibility of the cloud

provider.

Figure 1. Simple cloud load balancing

Sreelekshmi & Remesh

108

Load balancing is one of the overriding issues in cloud

computing due to the dynamic nature of the cloud. As in a

distributed environment, load balancing mechanism in cloud

distributes the dynamic workload evenly across all the nodes

in the cloud to avoid a situation where some nodes are heavily

loaded while others are idle or doing little work. It helps to

attain increased satisfaction to the customers and high resource

utilization that consequently improving the overall

performance and profit of the provider. When the load

balancer is down, the entire process will be crashed even when

the processor is ready to process the task. It causes a single

point of failure for the entire system.

 In the mission critical application of single point failures are

to be avoided. If we adopt multiple load balancers, it will

increase the fault tolerance of the system. This paper proposes

a modified fault tolerant system with optimized scheduling

that can improve the existing mechanism in load balancing

with capacity estimation [1]. Sliding window based

self-learning and adaptive load balancer (SSAL) [7] is an

observation based load balancer that can produce optimal

throughput in both stable and unstable environments. SSAL

monitored the performance of the cluster members in every

feedback interval and is trying to overcome the problems due

to single point failure. Also it is used to make corrections in the

load distribution model.

 The main contributions of this paper are (1) Single point

failure of the system can be recovered by the usage of multiple

systems in parallel (2) Sharing of load balancing information

among all other load balancers and (3) An analysis to find out

cluster capacity needed for the better performance of the

system.

 This proposed work is organized as follows. Similar works

are already proposed by the researchers are reviewed in

section 2. Problem identification, detailed design and

explanation of the proposed method are described in section 3

and section 4 respectively. In section 5 covers the performance

analysis and finally the paper concludes in section 6.

II. Related Works

Load balancing, is one of the important and difficult areas of

cloud computing. The load is unpredictable in cloud

computing and it can be varied, depending on the demand for a

particular service. For ensuring better performance and QoS,

the load balancing mechanisms have more important role.

There are several papers are available related to this issue.

Fault tolerance is also a significant issue in parallel

applications. The paper [2] gives an idea about fault tolerant

parallelization with task pool pattern in global load balancing.

Also describe a fault tolerant mechanism in paper [3]. Here

uniformly dispense the workload across the nodes and

eliminates the faults from the network. It contains a frame

work for tolerating simultaneous failures. For handling the

dynamic load among the virtual machine, an efficient load

balancing of resources is necessary. A fault tolerant load

balancing techniques based on a graph structure is illustrated

in article [4]. The model can improve the utilization of

available resources in the environment along with fault

tolerance. Service level Agreement (SLA) is an agreement

between the customer and service provider. It develops a

prevention method for SLA violation to avoid costly penalties’

[5]. In grid and cloud computing the role of load balancer is

important to deal with potential problems, such as high level of

scalability and heterogeneity of computing resources [6]. Here

present a generic load balancing scheme, which separates the

allocating and migrating process while preserving a

guaranteed level of service. The work in paper [8] provides

different load balancing and job migration techniques for

scheduling tasks. In the virtualized scenario, task scheduling

can also be performed using preemption and non-preemption

based on the user requirement.

 Task allocation and scheduling on a set of virtual machines

is one of the important difficulties in cloud computing. It can

be overcome with heuristic algorithms, which includes

Genetic Algorithm (GA), Particle Swarm Optimization (PSO),

Ant Colony Optimization (ACO) etc. Task allocation with an

efficient greedy algorithm and genetic algorithm with the help

of cross over and mutations is described in [9].Virtual

Machine scheduling in cloud environment proposed in [29] is

a model of VM load balancing based on task execution time

span. Multi objective method for the optimal work load

distribution using particle swarm optimization [10] can

minimize the response time and cost of the incoming request

and maximize the profit of the broker. The resource allocation

performed with the help of genetic algorithm is presented in

[11]. Here the optimization of incoming VM request by

minimizing the response time (RT) and Cost of VM instances

to maximize the profit of the broker. The paper [12] provides

an optimal scheduling with energy efficient method without

crossing any uncomfortable delay to the customer. Markov

decision process [13] can also be used for the optimal

scheduling of energy storage devices in power distribution

network with minimizing cost of energy.

 When the central part of the system is down, the overall

performance of the system is degraded. It is known as the

single point of failure. A method for overcome this single point

of failure using heart beat algorithm is illustrated in [14].

There are different ways to balance the load optimally. Paper

[15] provides a survey related to the optimization techniques

based on evolutionary and swarm based algorithms. An

algorithm called Multiple Agent-based Load Balancing

Algorithm (MA) in which shifting of the workload is carried

out in IaaS cloud to achieve well dynamic load balancing

across virtual machines for maximizing the resource

utilization [7]. A novel algorithm for sharing distributed file

systems is proposed in paper [16]. Here, nodes are

simultaneously serves computing and storage functions. A File

is partitioned into a number of chunks and is allocated to

distinct nodes so that tasks can be performed in parallel over

the nodes. The paper [17] discusses and compares load

balancing algorithms to provide an overview of the latest

approaches in this field. Paper [18] proposes a load balancer

framework, which is aware of multiple quality of service, in

large scale distributed computing system. The review in paper

[19] aims to provide a structured and comprehensive overview

of the research on load balancing algorithms in cloud

computing. The vital part of this paper is the comparison of

different algorithms considering the characteristics like

Synchronized Multi-Load Balancer with Fault Tolerance in Cloud

109

fairness, throughput, fault tolerance, overhead, performance,

and response time and resource utilization. Based on the load

status, the system can dynamically shift the load from the

heavily loaded controller to the lightly loaded ones [31]. An

open flow based dynamic traffic scheduling takes the

advantages of Software Define Network (SDN) central

controllers [32].

 The load balancing can be performed by different

algorithms. These algorithms are classified into the static,

dynamic, bio or nature inspired, and game theory based

algorithms. The static algorithm includes random algorithm,

round robin algorithm, min-min, min-max algorithm and

weighted round robin algorithms. In the methodical analysis of

various balancer conditions on public cloud division, Ant

colony and Honeybee behavior is best for the balancing of

load under normal balancer condition [20]. In idle balancer

condition round-robin is being applied which appears suitable

for that condition. In addition for huge and complex corporate

area, it focuses on the strategy of divisions based on region to

simplify the load balancing. The relation between probabilistic

routing and weighted round robin load balancing policies is

explored in [21]. Cloud computing issues like resource

provisioning, load imbalance and performance improvement

can be solved using bio-inspired algorithms. Paper [22] gives a

detailed review of the bio-inspired algorithms proposed in

cloud computing. Genetic algorithm is a search algorithm

based on the principles of evolution and natural genetics’. The

work [23] proposes a GA based load balancing strategy for

cloud computing.

 In order to improve resource utilization and profit, more

number of VMs are allocated to a particular server, the

performance delay will create interference [33] and that will

affect overall QoS. The article [24] gives an idea about QoS of

multi-instance applications in the Clouds. This approach is

based on limiting the number of requests at a given time that

can be effectively sent and stored in queues of virtual

machines through a load balancer equipped with a queue for

incoming user request. The paper [25] proposes a QoS aware

load balancing scheme in congested extended service set

environment. A QoS-aware replica placement for data

intensive applications is presented in paper [26]. It addresses

the QoS aware replica placement problem in the data grid, and

proposes a dynamic programming based replica placement

algorithm.

III. Problem Identification

One of the main features of the cloud is that, on-demand

computing at any time at low cost with ensured QoS. In the

cloud, there is no explicit knowledge for the customer about

where the task is being executed and in which server. Cloud

providers are trying to offer fault tolerant service to their

customers. But single point failures are one of the barriers for

fault tolerant continuous service. Since the load balancer is

responsible for distributing the tasks received from the end

users to the optimal processors by considering the minimal

response time, energy consumption and maximum profit

earned. The processing of tasks will be halted when the load

balancer is down, even when the processor ready to execute it.

This may be due to the hardware failures like, server crashes,

network down, power failures or disk crashes. Software

failures like directory proxy server crash and database

corruption will also result in single point failure. So to address

these failures, a suitable cooperative mechanism is needed for

fault tolerant cloud service.

IV. System Design

The proposed system contains a number of schedulers (load

balancers) and each scheduler can able to balance the task

across multiple processors. These schedulers interacts each

other to communicate the information they gathered about the

running task status and their tasks in the input queue. They are

also able to distribute the tasks to other processors in the data

center based on the known capability of each processor. After

the execution of each processor, it can generate a feedback

based on the current capacity of each server. The capacity

calculation is done in fixed time interval based on number of

tasks processed by the processor and the tasks pending in the

queue.

 This frequent monitoring and cooperative load balancers

ensure the QoS to the end users. Also in cooperative load

balancing, none of the load balancers are overloaded due to the

sharing of information about tasks already completed, being

executed and waiting in the queues. The architecture of the

proposed method is shown in figure 2. The detailed

explanation is given in the next sub sections.

A. Task Handling

A set of tasks with distinct specifications from the end users

are to be handled by a task handler, in which identical tasks are

eliminated and the remaining are stored in it. Hence it can

reduce the overhead of the entire process by removing

duplicate tasks. An SLA checking based on the cost and time

constraints are to be performed in this level. Here considering

the user specified cost of the incoming task with the price of

the service provider. If the deviation is greater, then the

corresponding requests are accepted otherwise there exists an

SLA violation of the task.

Figure 2. System model

The time based mechanism which considers tasks’ arrival time

and response time. If the difference is small, such tasks are to

be accepted others are rejected or SLA violation take place if

accepted. Then the tasks are distributed among different load

balancers on the basis of round robin scheme. Once the

scheduler is down, the tasks stored in the queue are transferred

Sreelekshmi & Remesh

110

back to the request handler. That is the task handler stays

active until the completion of the processes at each scheduler.

B. Load Balancing and Capacity Calculation

A set of task is given to each scheduler (load balancer), which

stores them in an output queue. There exists a dispatcher for

distributing the requests to different processors based on

individual processing capacity. It is computed on the basis of

three constraints. When a client submits a tasks to the service

provider through an intermediate cloud broker, the client want

to complete the job in a short period of time. Therefore

response time can be considered as one of the objective

function.

Response Time = Transmission Time + Processing Time

 = (Ts/bw) + (Ts/Ps) (1)

When the user submits a tasks to the service provider, the

cloud broker find the best solution for the user satisfaction.

During the process, the broker expected to obtain a certain

profit. Therefore, maximizing profit of the broker can

considered as the second objective.

Profit = Processing cost of PM – Cost of user task

 = Pc - Tc

 = (Pt * Ppm) - Tc

 = (Ts/Ps) * Ppm - Tc (2)

For the processing of tasks from the user, the service provider

needs an energy usage. Ej is the energy consumption of service

provider j to execute a task. Minimum consumption of energy

can be considered as the third objectives

Ts - Task size

bw - Bandwidth of the processor

Pc - Processing cost

Tc - Task cost

Pt - Processing time of PM

Ppm - Price of PM

From the available information it can find a processor with

minimum response time, minimum energy consumption and

maximum profit that can be earned for processing tasks on a

service provider. This can be computed on the basis of a

ranking strategy. Ranking procedure is considering the

response time, energy consumption and profit earned during

the processing of each task in each processor. Tasks can be

assigned on the basis of available resources in server and

considering the requirement of incoming tasks. Then it finds

the optimal processor for each task by considering the

optimization condition. An example for ranking strategy is

shown in Table 1 and 2. The capability may be varied under

special circumstances like the processor being down or

crashed or some heavy load is being executed on the servers.

The resource capability correction is handled by a single

scheduler (known as the coordinator) selected from the set of

schedulers, based on a centralized method. The central

coordinator can make corrections based on the observation

reported by individual schedulers. The coordinator is selected

in accordance with the algorithm given in figure 4.While tasks

are being executed in different processors, the dispatcher

makes a feedback to the schedulers regarding the new

capability of processors.

Figure 3. SLA checking

 P1 P2 P3

Task 1 (8, 100, 100) (12, 15, 50) (14, 10, 30)

Task 2 (9, 20, 40) (19, 10, 90) (21, 50, 50)

Task 3 (9, 10, 10) (21, 50, 50) (11, 40, 70)

Table 1. Before ranking strategy.

 P1 P2 P3

Task 1 (8, 100, 100) (12, 15, 50) (14, 10, 30)

Task 2 (9, 20, 40) (19, 10, 90) (21, 50, 50)

Task 3 (9, 10, 10) (21, 50, 50) (11, 40, 70)

Table 2. After ranking strategy.

Here in Table 1 and 2 each entry (a, b, c) is (Response time,

Energy consumption, Profit) and P1, P2, P3 represents

Processors. From this the optimized best result is: Task 1 – P1,

Task 2 – P2, Task 3 – P1.

1. Begin

2. Multicast coordinator selection information and the

time is noticed.

3. If no message is received from other schedulers.

current one becomes the coordinator

4. If message received, the reporting time is noticed and

the scheduler with greater responding is selected as

the coordinator.

5. If more than one of them has the same responding

time then scheduler with the highest capacity is

selected as the coordinator

6. The selected coordinator details multicasts to all

others.

7. Return

Figure 4. Coordinator algorithm

Synchronized Multi-Load Balancer with Fault Tolerance in Cloud

111

The feedback contains information about the number of tasks

processed by the processer and those are pending in the output

queues of the respective processor. Initially, one scheduler

acts as the coordinator. The coordinator process the

information based on the algorithm given in figure 5. It also

calculates the capability of each processor. The coordinator

now multicasts the capability information obtained to every

other scheduler in the data center. In the next stage, all the

schedulers work in parallel using this capability information.

Each of the individual schedulers obtains the capability

information from the processor as a feedback. These

schedulers pass the obtained information to the coordinator,

for performing the necessary corrections. This will be done by

the generation of the capability information of individual

processor in an updated manner, using the possible

combinations of capabilities provided by schedulers in

different instances of time. Based on the newly available

capacity information, it can distribute the tasks among

processors. In this method, the coordinator is assumed to be

down, when any of the schedulers do not obtain the

information in three consecutive multicasts.

1. Begin

2. Select coordinator

3. Each scheduler (Si) monitors the number of Tasks

processed (Xijt) and the number of tasks in the queue

(Yijt) for the processer, for every feedback interval (t)

4. After feedback interval send the information to the

coordinator

5. Coordinator collect the observation reported by each

scheduler

6. Coordinator Calculate average no of tasks processed

by each processer(Pj) at interval(t) APjt= 


n

i
ijtAX

1
)(

7. Calculate the average no of tasks pending in the

queue processed by the processer (Pj) as

PRjt= 


n

i
ijtAY

1
)(

8. Estimated request for processer PjisERjt=APjt

9. Estimated capability of the processer Pj, ECjt =

(ERjt/max(1,PRjt))

10. Relative capability of the processer RCjt= (ERjt

/ 


n

i
jtEC

1
)(

11. Total tasks to be issued in the next feedback interval

Tt= 


n

j
ER
1

12. Total tasks issued for the next feedback interval by

the scheduler is Tit = (Tt)/n

13. Send adjust load distribution message to all

schedulers

14. Return

Figure 5. Capacity estimation algorithm

Where Xijt is the number of tasks handled by the scheduler Si to

processor Pj in feedback interval t and Yijt is the number of

tasks pending in the queue of processor Pj at scheduler Si in the

interval t and n is the total number of schedulers.

For better performance of the system, each scheduler can

monitor the throughput of the incoming request and make a

comparison with a standard value. Based on the information

from the schedulers, the coordinator can make a correction in

the cluster capacity.

 Standard value () is generated based on the total cluster

capacity (CC) and the total number of tasks (T) in the task

handler at time t. It is calculated using the equation (3).

 = (CC/Tt) (3)

Each scheduler monitors the throughput value for each task

and compares them with the standard value. Also, schedulers

calculate the deviations from these values. If it is above  then

considers it as a Success Variation (SV), if it is the below the

limit then consider it as a Failure Variation (FV) for each task.

Equation (4) and (5) is used to calculate SV and FV of a ith

scheduler for a request j.

SVij = (−measured value) / (4)

FVij = (measured value−)/ (5)

Over time capacity OCt at a particular time t is the sum of

success variations and it is represented by equation (6). Under

capacity at time t (UCt) is the sum of failure variation over the

limit. It is calculated using the equation (7).

OCt= 


n

i
ijSV

1
 (6)

UCt= 


n

i
ijFV

1
 (7)

Capacity Deviation (CD) is the difference between over and

under capacity. Then the increase in cluster capacity is

determined by the equation (8).

Increase the cluster capacity = (CC/TRt)∗CD (8)

Where TRt is the total request to a scheduler. If the under

capacity is greater than the over capacity, the cluster capacity

can be reduced using the equation (9).

Capacity Reduction = (CD ∗ (CC/ (T Rt + CD)) (9)

V. Experimental Setup and Results

The proposed method is simulated using CloudSim 4.01 with

three schedulers. In the initial stage, one scheduler is used for

distributing the entire request to the servers. After this initial

step, schedulers calculate the capacity of every server using

the capacity calculation algorithm. Based on the newly

measured capacity, all the schedulers can distribute the load

across servers.

 From the capacity deviation analysis shown in figure 6, the

deviation is gradually increased when the number of the task is

increasing. When the number of tasks is 20 the deviation is

33.33%. so the system needs 33.33% or additional resources

for effective load balancing. Similarly 60%, 66.67% and

57.20% when the number of the task are 50, 60 and 70

respectively. Also note that in the initial stage, there are no

Sreelekshmi & Remesh

112

deviations in the load, due to fewer users are present.

Figure 6. Variations graph for 2 VMs

Figure 7. Variations graph for 3 VMs

From the capacity deviation analysis shown in the figure 7,
the deviation is gradually increasing with the increase in
number of tasks. When number of tasks is 40 then there
occured a deviation of 25.00%. The system require 45% or
additional resources for the scheduling process. In this way
when the number of task are 60 and 70 the corresponding
fluctuations are 50% and 47.16% respectively. Also note that
the execution of three VMs leads to a 7% of decrement of
cluster capacitywhen compare to the usage of two VMs.

Figure 8. Number of fault of occurred

Figure 8 shows the percentage of fault occurred for different

number of VMs with number of user requests. From the figure

it is observed that number of faults occurred is less than 0.1%

in all the cases. This shows the effectiveness of the mechanism,

i.e., the proposed cluster variation mechanisms gives nearly

99.9% fault tolerant execution of user requests.

Figure 9. Response Time variation

Similarly response time variations are measured for different

number of user requests for a single VM is shown in the figure

9. As the number of requests increases there is no significant

variation in the response time.

 The cost benefit analysis for the proposed method is given

in figure 10. The fault tolerant execution is cost effective for

the provider when the providers have minimum number of

active users. Our experiment shows that when the number of

users are too high or very low, the provider is not in a better

position. This is due to two conditions. (1) at low load, the

provider have to run more number of physical servers to

maintain QoS and (2) at high low load, the penalty is high due

to possibility of SLA breaches. This can be avoided using

suitable migration and auto scaling techniques. So in future, a

fault tolerant system with suitable auto scaling mechanism

needed to accommodate more number of users.

Figure 10. Cost Benefit analysis

VI. Conclusion

The load balancer receives the request and distributes to

servers which has minimum Response time, minimum energy

consumption and maximum profit to process them efficiently.

When the load balancer fails, the user requests will not reach

the servers and results the single point of failure for the overall

system. Here propose a “Synchronized Multi-Load Balancer

with Fault Tolerance in Cloud” that extends the single load

balancer to make it more fault tolerant. The estimated cluster

information shared among different user groups to collaborate

multiple schedulers for fault tolerance. The scheduler also

provides additional functionality to set and monitor the

performance standards and find the cluster capacity changes

needed to meet the standard value. In future it can be extended

for energy aware scheduling.

Synchronized Multi-Load Balancer with Fault Tolerance in Cloud

113

References

[1] Sreelekshmi Suresh and K R Remesh Babu, Fault

Tolerant Multiple Synchronized Parallel Load Balancing

in Cloud, International conference on Hybrid

Intelligence System 2017,2017, pp 11-16.

[2] Jonas Posner and Claudia Fohry, Fault Tolerance for

Cooperative Lifeline-Based Global Load Balancing in

Java with APGAS and Hazel cast, 2017 IEEE

International Parallel and Distributed Processing

Symposium Workshops (IPDPSW),2017, pp 854-863.

[3] V. Indhumathi and G. M. Nasira, Service oriented

architecture for load balancing with fault tolerant in grid

computing, 2016 IEEE International Conference on

Advances in Computer Applications (ICACA),2017, pp

313-317.

[4] R. Kanniga Devi, G. Murugaboopathi, P. Vijayakumar, A

Graph-Based Mathematical Model for an Efficient Load

Balancing and Fault Tolerance in Cloud Computing,

2017 Second International Conference on Recent Trends

and Challenges in Computational Models

(ICRTCCM),2017,pp 136-140.

[5] Radhya Sahal1, Mohamed H. Khafagy and Fatma A.

Omara, A Survey on SLA Management for Cloud

Computing and Cloud-Hosted Big Data Analytic

Applications, International Journal of Database Theory

and Application Vol.9, No.4 ,2016, pp 107-118.

[6] V R Chandakanna , V K Vatsavayi, A QoS-aware

Self-correcting observation based Load Balancer, The

Journal of System and Software 115,2016,pp 111-120

[7] V R Chandakanna, V K Vatsavayi, Sliding window based

Self-learning and Adaptive Load balancer, The Journal

of System and Software 115,2015,pp 188-205

[8] Neeraj Rathore and Inderveer Chana, Load Balancing and

Job Migration Techniques in Grid: A Survey of Recent

Trends, Wireless Personal Communications: An

International Journal, Volume 79 Issue 3, December

2014, pp 2089-2125.

[9] Amjad Mahmood and Salman A. Khan, Hard Real-Time

Task Scheduling in Cloud Computing Using an Adaptive

Genetic Algorithm, MDPI journals, 2017, pp 1-20.

[10] Teerawat Kumrai, Kaoru Ota, Mianxiong Dong, Jay

Kishigami, Dan Keun Sung, Multi-objective

Optimization in Cloud Brokering Systems for Connected

Internet of Things, IEEE Internet of things journal, vol. 4,

no. 2, April 2017,pp 404-413.

[11] Yacine Kessaci, Nouredine Melab, El-Ghazali Talbi, A

Pareto based genetic algorithm for optimized assignment

of VM requests on a cloud brokering environment, 2013

IEEE congress on evolutionary computation, June

2013,pp 2496-2503.

[12] E. Bejoy, S. N. Islam, A. M. T. Oo, Optimal scheduling of

appliances through residential energy management,2017

Australasian Universities Power Engineering

Conference (AUPEC),08 February 2018,pp 1-6.

[13] Samuele Grillo, Antonio Pievatolo, Enrico Tironi,

Optimal storage scheduling using Markov decision

processes, 2017 IEEE Power &Energy Society General

Meeting,01 February 2018,pp 1-1.

[14] Dongsheng Wang, Chuanhe Huang, Zhenyu Ju,

Performance Optimization of Distributed Real-Time

Computing System JStorm,2017 4th International

Conference on Information Science and Control

Engineering (ICISCE),16 November 2017,pp 532-537.

[15] Akash Dave and Gopi Bhatt, Load balancing in cloud

computing using optimization techniques: A study, 2016

International Conference on Communication and

Electronics Systems (ICCES), 30 March 2017, pp 1-6.

[16] Shilpa V Pius, Shruthi Suresh, A Novel Algorithm Of

Load Balancing In Distributed File System For Cloud,

IEEE Sponsored 2nd International Conference on

Innovations in Information, Embedded and

Communication systems (ICIIECS), 2015,pp 1-4.

[17] K Nuaimi, N Mohamed, M Nuaimi and J Al-Jaroodi, A

Survey of Load Balancing in Cloud Computing:

Challenges and Algorithms, IEEE Second Symposium

on Network Cloud Computing and Applications,2012,pp

137-14.

[18] V.H. Nguyen, S. Khaddaj, A. Hoppe, Eric Oppong, A

QoS based load balancing framework for large scale

elastic distributed systems, 10th International

Symposium on Distributed Computing and Applications

to Business, Engineering and Science,2011, pp 15-14.

[19] Sidra Aslam, Munam Ali Shah, Load balancing

algorithms in cloud computing: A survey of modern

techniques, 2015 National Software Engineering

Conference (NSEC), 2015, pp 30 – 35

[20] A.Nadap and V.Maral, Methodical analysis of various

balancer conditions on public cloud division

International Conference on Computing Communication

Control and Automation, 2015, pp 40-46.

[21] Weikun Wang ,Giuliano Casale , Evaluating Weighted

Round Robin Load Balancing for Cloud Web Services,

16th International Symposium on Symbolic and Numeric

Algorithms for Scientific Computing, 2014,pp 393-400.

[22] B. Balusamy, J. Sridhar , D. Dhamodaran, P. Venkata

Krishna, Bio-inspired algorithms for cloud computing: A

Review, International Journal of Innovative Computing

and Applications,vol.6, 2015, pp 181–202

[23] K.Dasgupta, B. Mandal., P.. Dutta, J. K.Mandal, A

Genetic Algorithm (GA) based Load Balancing Strategy

for Cloud Computing, International Conference on

Computational Intelligence: Modeling Techniques and

Applications (CIMTA),Volume 10, 2013,pp 340-347

[24] M Mould Dey,Y Slimani, Load Balancing approach for

QoS management of multi-instance applications in

Cloud”, International Conference on Cloud Computing

and Big Data,2013,pp119-126.

[25] Xiong FU, Xin-xin ZHU, Jing-yu HAN, Ru-chuan

WANG (2013), QoS-aware replica placement for data

intensive applications, The, Volume 20, Issue 3, June

2013, pp 43-47.

[26] Hyundong Hwang,Young-Tak Kim, QoS-aware fast BSS

transitions for seamless mobile services and load

balancing,2014 IEEE International Conference on

Consumer Electronics (ICCE),20 March 2014,pp

159-160.

[27] Deepak Jain, Aradhana Goutam, Optimization of resource

and task scheduling in cloud using random forest2017

International Conference on Advances in Computing,

Communication and Control (ICAC3),2017,pp1 – 5.

[28] Violetta N. Volkova, Liudmila V. Chemenkaya, Elena N.

Desyatirikova, Moussa Hajali, Almothana Khodar,

Alkaadi Osama, Load balancing in cloud computing,

Sreelekshmi & Remesh

114

2018 IEEE Conference of Russian Young Researchers in

Electrical and Electronic Engineering (EIConRus), 2018,

pp 387 – 390.

[29] Li Liu, Zhe Qiu, Jie Dong, A load balancing algorithm for

virtual machines scheduling in cloud computing, 2017

9th International Conference on Modelling,

Identification and Control (ICMIC), 2017, pp 471 – 475.

[30] Mohammad Riyaz Belgaum, Safeeullah Soomro, Zainab

Alansari, Muhammad Alam, Shahrulniza Musa,

Mazliham Mohd Su'ud, Load balancing with preemptive

and non-preemptive task scheduling in cloud computing,

2017 IEEE 3rd International Conference on Engineering

Technologies and Social Sciences (ICETSS), 2017, pp 1

– 5.

[31] Wenjing Lan, Fangmin Li, Xinhua Liu,Yiwen Qiu, A

Dynamic Load Balancing Mechanism for Distributed

Controllers in Software-Defined Networking, 2018 10th

International Conference on Measuring Technology and

Mechatronics Automation (ICMTMA),2018,pp 259 –

262.

[32] Guo Xiao, Wu Wenjun, Zhao Jiaming, Fang Chao, Zhang

Yanhua, An OpenFlow based Dynamic Traffic

Scheduling strategy for load balancing, 2017 3rd IEEE

International Conference on Computer and

Communications (ICCC), 2017, pp 531 – 535.

[33] K.R.R. Babu, P. Samuel, Interference aware prediction

mechanism for auto scaling in cloud, Computers and

Electrical Engineering (2017),2017, pp 1-13.

Author Biographies

Sreelekshmi S, was born in Kerala, India in 1994. She

received the B Tech Degree in Computer Science and

engineering from the Cochin University Of Science And

Technology (CUSAT), Kerala, India in 2016. She is

currently perusing Masters Degree (M Tech) in Network

Engineering from APJ Abdul Kalam Technological

University, Kerala, India. Her research interest includes,

Distributed and cloud Computing, Big data analytics, and

Internet of Things.

K R Remesh Babu received his BSc. degree in

Mathematics from Mahatma Gandhi University,

Kottayam, India and B.Tech in Information Technology

from Cochin University of Science & Technology

(CUSAT), Kochi, India. He holds ME in Computer

Science from PSG Tech Coimbatore, India. He is currently

pursuing the Ph.D. degree at CUSAT. He is an assistant

professor in department of Information Technology,

Government Engineering College Idukki, India. He has

published more than 35 research papers in International

Conferences and Journals. His research interests includes

Distributed and Cloud Computing, Internet of Things,

Wireless Sensor Networks, and Big Data Analytics..

