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Abstract: When customers buy goods or services from business 

entities they are usually given a receipt that is known with the 

name fiscal or tax coupon, which, among the others, contains 

details about the value of the transaction. In some countries, the 

fiscal coupons can be collected during a certain period of time 

and, at the end of the collection period, they can be handed over 

to the tax authorities in exchange for a reward, whose price 

depends on the number of collected coupons and the sum of their 

values. From the optimization perspective, this incentive 

becomes interesting when, both the number of coupons and the 

sum of their value is large. Hence, in this paper, we model this 

problem in mathematical terms and devise a test set that can be 

used for benchmarking purposes. Furthermore, we solve this 

problem by means of two metaheuristics, namely Genetic 

Algorithms and Greedy Randomized Adaptive Search 

Procedure. Finally, we evaluate the proposed algorithms by 

comparing their results against the relaxed versions of the 

proposed problem. The computational experiments indicate that 

both approaches are competitive, as they can be used to solve 

realistic problems in a matter of few seconds by utilizing 

standard personal computers. 

 
Keywords: Distribution of fiscal coupons, Mathematical 

Modelling, Genetic Algorithms, Greedy Randomized Adaptive 

Search Procedure.  

 

I. Introduction 

The tax authorities of many countries try to find alternative 

ways to enforce business entities (e.g. shops, restaurants, 

travel agencies, etc.) to fully declare the profit they gain from 

their business activities, so that they have to pay taxes 

accordingly. The tax authorities from several countries, like 

for example Republic of Kosovo [1] or State of Minnesota in 

USA [2], utilize the strategy of encouraging the customers to 

collect the fiscal coupons when they do any kind of transaction 

with business entities. The collected coupons [1] can be 
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enveloped and submitted to the tax authorities in exchange of 

a reward that depends on the number and the total value of the 

fiscal coupons enclosed. In general, depending on the actual 

rules put in place by specific tax authorities, there can be 

different types of envelopes that can be submitted. Obviously, 

envelopes with more coupons and with higher total values, 

have higher rewards. 

In more formal terms, in the case of the Distribution of 

Fiscal Coupons Problem (DFCP), each person has N number 

of coupons (see Figure 1) collected for a period of time (e.g. a 

three-month period). At the end of the collection period, the 

coupons will be distributed into a T number of envelopes by 

the person who possesses the coupons. The person has to make 

a decision related to which coupon is placed in which 

envelope.  Each coupon has a value and consequently it should 

be placed in the envelope ultimately where the sum of values 

of the coupons in the envelope will lead to an overall higher 

reward. Each coupon can only be placed into a single envelope. 

The number of coupons in each envelope cannot be less than 

a minimum, whereas also the sum of all coupons cannot fall 

under minimum value. The achievable reward from each 

envelope type is predefined based on the number and values 

of the coupons placed inside it. 

For illustrative purposes, in Tables 1, 2 and 3, we present a 

 
Figure 1. The schematic view of the fiscal coupons 

problem 
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sample scenario of a fiscal coupons distribution problem. 

Table 1 depicts the basic problem details, such as number of 

coupons, number of types of envelopes, the values of 

individual coupons and the total values of coupons. In Table 

2, we present the details about types of envelopes, in terms of 

applicable constraints (i.e. minimum number of coupons and 

value) and achievable reward. Whilst, in Table 3, we present 

a possible solution (i.e. distribution of fiscal coupons into 

envelopes) to this actual problem, where it can be seen that the 

total reward is 5.5 €. 

 

Envelope type Minimum 

coupons 

Minimum 

value (€) 

Reward 

(€) 

1 

2 

3 

2 

4 

6 

20 

25 

30 

1 

1.5 

2 

Table 2. Types of envelopes 
 

No. of envelope Type of 

envelope 

Reward (€) List of 

coupons 

1 

2 

3 

4 

1 

1 

2 

3 

1 

1 

1.5 

2 

5, 15 

8, 12 

7, 7, 7, 9 

1, 2, 3, 4, 

4, 6, 10 

 Total 

reward: 
5.5  

Table 3. Sample solution 

The significance of the work in this paper can be underlined 

by outlining its main contributions, which are: (i) introduction 

of a new optimization problem for the scientific community 

by presenting a mathematical formulation, as well as a test set 

that can be used for bench-marking purposes, (ii) development 

of two metaheuristic based solutions to the newly introduced 

problem, where one of them is based on Genetic Algorithms, 

whereas the other one is based on Greedy Randomized 

Adaptive Search Procedure, and (iii) presentation of the 

systematic computation results that compare the performance 

of the proposed algorithms against solutions of the relaxed 

version of the envisioned problem, which can be used as 

benchmark results for future solutions. 

The remainder of this paper is structured as is in the 

following. Section 2 presents a literature review of the related 

problems and their respective solution approaches. Next, in 

Section 3, we present the mathematical modelling of the 

DFCP problem as an Integer Linear Programming Problem. 

In Section 4, we present the proposed approaches for solving 

the DFCP problem, while in Section 5, we show computation 

results of the proposed approaches against a data set of 10 

instances. Finally, in Section 6, we conclude the paper and 

present our view for the subsequent future work. 

II. State of the art 

In the classical Knapsack Problem (KP) there is a set of items 

and a container (knap-sack) that has to be used for carrying a 

subset of items. Each item is characterized with two properties, 

namely value and weight, whereas the container has a single 

property, which is the maximum weight it can carry. The goal 

is to place a subset of items into the container such that the 

total value of the placed items is maximized subject to the 

capacity of the container. The Multiple Knapsack Problem 

(MKP) extends the KP problem by allowing multiple 

containers of the same capacity [3], whereas the Distributed 

Multiple Knapsack Problem (DMKP) supports containers of 

varying capacities, which can be modelled as a general 

Distributed Constraint Optimization Problem (DCOP) [4] [5] 

[6] [7]. The DCOP problem was solved by using memory-

bounded and asynchronous algorithms that are based on the 

search strategy of ADOPT, which is a technique that alternates 

between best-first search and depth-first branch-and-bound 

search [3]. Another approach for DCOP problem is a 

distributed algorithm called optimal asynchronous partial 

overlay, which is a partial centralization technique known as 

cooperative mediation. The basic idea of this search technique 

is to focus the search process within areas of a sub problems 

that overlap, and then increase the size of the search horizon 

as the smaller sub problems gets solved [5].  Another 

extension of MKP is the generalized quadratic multiple 

knapsack problem (GQMKP) [8] [9], which introduces three 

new features: (i) quadratic component that allows extra profit 

in case two items are selected jointly, (ii) setups that enable 

grouping items into classes, where each class is characterized 

with a fixed cost and capacity, and (iii) consideration of 

knapsack preferences for the items. The GQMKP was 

recently solved by using a memetic approach [8] that 

combines a back-bone crossover operator with a simulated 

annealing algorithm that utilizes a neighborhood exploration 

mechanism consisting of multiple operators. 

No. of coupons No. of 

types of 

envelopes 

Coupon 

values (€) 

Sum of 

all 

coupons 

(€) 

15 3 7, 4, 9, 15, 2, 

4, 6, 3, 10, 5, 

7, 8, 1, 12, 7 

100 

Table 1. Basic details of fiscal coupons problem 

Problem Objective Capacity 

constraints 

No. of. 

Containers 

No. of 

features 

per item  

No. of 

features 

per 

container  

Preference 

of items 

for 

containers  

Relation 

between 

items 

All 

items 

to be 

selected 

Upper 

limit 

Lower 

limit 

KP 

MKP 

DMKP 

GQMKP 

BPP 

RCP 

DFCP 

Max 

Max 

Max 

Max 

Min 

Min 

Max 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

No 

No 

Yes 

Yes 

Yes 

No 

No 

Yes 

1 

>1 

>1 

>1 

>1 

>1 

>1 

2 

2 

2 

3 

1 

1 

1 

1 

1 

1 

1 

1 

3 

3 

No 

No 

No 

Yes 

No 

No 

No 

No 

No 

No 

Yes 

No 

No 

No 

No 

No 

No 

No 

Yes 

Yes 

No 

Table 4. Comparison of features of various related problems 
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Another related problem is the Bin Packing Problem (BPP), 

where a set of items need to be placed into a set of containers 

(bins). Each item has a weight property, whereas each 

container has a maximum capacity property. The goal is to 

place each item into a container such that the number of 

containers used is minimized. In comparison to KP problem, 

where only a subset of items can be picked, in the BPP 

problem all items have to be picked up [10]. Further, the two-

dimensional bin packing problem is used in situations where 

a set of rectangle objects have to be accommodated into larger 

standardized rectangles with the aim of minimizing the waste 

(i.e. leftover from the standardized rectangles when all 

rectangles are placed). Lodi et al. [11] did a survey of different 

modellings for the two-dimensional BPP and described a 

plethora of approaches utilized in the literature. 

An additional related problem is the Rack Configuration 

Problem (RCP), where there is a set of items (electronic cards) 

that need to be placed (connected) into a set of containers 

(racks). Each item has a single property (i.e. power it requires), 

whereas each container has three properties, namely maximal 

power it can supply, number of connectors and the price. The 

goal is to plug in all the electronic cards into a set of racks with 

the smallest cost possible [12]. This problem has been tackled 

by using constraint satisfaction problem techniques, where the 

issue of reducing the symmetry in RCP is considered. Further, 

the primal and dual model of RCP are integrated in order to 

produce better results [12]. 

In Table 4, we compare the newly proposed DFCP problem 

against the above presented related problems, by outlining 

different characteristics of the individual problems, such as: 

type of objective function, capacity constraints (i.e. 

upper/lower limit), the number of containers, the number of 

features per item/container, and whether all items need to be 

selected. By analyzing the details given in the table, one can 

conclude that DFCP problem is closely related to RCP 

problem, in terms of number of containers and features per 

item/container, but differs in terms of the objective function, 

capacity constraints and in the aspect whether all items need 

to be selected. 

In [13], we presented a steady-state genetic algorithm for 

solving the DFCP problem, where the search space is explored 

by using a combination of two mutation operators, namely 

swap (that interchanges two coupons belonging to distinct 

envelopes) and shift (that shits a given coupon from one  

envelope to another one). More details of this approach are 

given in the section of Solution Approaches. To the best of 

authors’ knowledge, except our work presented in [9], there is 

no any problem in the literature that models or solves the 

problem of the distribution of fiscal coupons, hence in the 

following section, we present a mathematical modelling of 

this problem, along with the proposed solutions. 

III. Mathematical modeling 

The mathematical modelling for the problem of the optimal 

distribution of the fiscal coupons is formulated as an Integer 

Linear Programming (ILP) model that has a range of 

parameters and a couple of decision variables, as specified 

below: 

 

Parameters:  

 N – Number of coupons  

 vi – Value of coupon i, i=1, …, N  

 T – Number of types of envelopes  

 
Ck – Minimum number of coupons in envelope of 

type k, k=1, …, T 
 

 
Sk – Minimum sum of all coupons in envelope of 

type k, k=1, …, T 
 

 
Rk – Achievable reward from envelope of type k, 

k=1, …, T 
 

   

Decision variables:  

 M – Number of envelopes  

 
xjk -equals 1, if envelope j is of type k, otherwise it 

is 0, j=1, …, M, k=1, …, T  
 

 
yij -equals 1, if coupon i is placed in envelope j, 

otherwise it is 0, i=1, …, N, j=1, …, M, 
 

   

Objective function:  

 𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 ∑ ∑ 𝑅𝑘𝑥𝑗𝑘

𝑇

𝑘=1

𝑀

𝑗=1
 (1) 

   

Constraints:  

 ∑ 𝑦𝑖𝑗𝑥𝑗𝑘 ≥ 𝐶𝑘

𝑁

𝑖=1
,𝑗 = 1, … , 𝑀,𝑘 = 1, … , 𝑇 (2) 

 ∑ 𝑣𝑖𝑦𝑖𝑗𝑥𝑗𝑘 ≥ 𝑆𝑘

𝑁

𝑖=1
,𝑗 = 1, … , 𝑀,𝑘 = 1, … , 𝑇 (3) 

 ∑ 𝑦𝑖𝑗 ≤ 1
𝑁

𝑖=1
,𝑗 = 1, … , 𝑀 (4) 

 ∑ 𝑥𝑗𝑘 = 1,
𝑀

𝑗=1
 𝑘 = 1, … , 𝑇 (5) 

In the mathematical formulation presented above, Equation (1) 

denotes the objective function of the problem at hand, which 

is maximizing the total reward, by determining which 

combination of envelopes yields to the highest possible profit. 

Constraints (2) and (3) ensure the validity of envelopes in 

terms of the requirement for the minimum number of coupons 

and the minimum sum of their values, respectively. Constraint 

(4) guarantees that each single coupon is inserted into at most 

one envelope, whilst Constraint (5) makes sure that each 

single envelope can belong to only one particular type of 

envelope. 

IV. Solution approaches 

In this section, we present the two approaches designed for 

solving the DFCP problem, where the first one is based on 

Genetic Algorithms (GA), whereas the second one is based on 

Grady Randomized Adaptive Search Procedure (GRASP). 

A. Genetic algorithms 

In this implementation, we use the Steady State approach of 

Genetic Algorithms, which was popularized by Whitley & 

Kauth [14]. Its main idea, compared to the traditional 

generational approach, is to update the population in a slight 

manner rather than all at one time. The algorithm iteratively 

breeds a new child or two, assesses their fitness, and then 

restores them directly into the population itself, slaying off 

some preexisting individuals to make room for them. The 

Steady-State Genetic Algorithm has two essential features. 

First, it uses half the memory of a standard genetic algorithm, 
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because there is only one population at a time. Second, it is 

more exploitative compared to a generational approach [15]. 

1) Algorithm particularities 

The particular details of the Steady-State Genetic 

Algorithm implemented here, can be summarized as in the 

following: 

Representation of a given candidate solution is made as a list 

of lists, where the size of the main list corresponds to the 

number of assigned envelopes M, whereas each single 

member of the main list is also a list that corresponds to the 

number of coupons ni placed inside a given envelope i. A 

sample representation of a given solution is: 𝑆 =

{𝐸1, 𝐸2, … , 𝐸𝑖 , … , 𝐸𝑀}, where 𝐸𝑖  = {𝐶1, 𝐶2, … , 𝐶𝑛𝑖
}. 

Initialization of a given candidate solution begins by reading 

all the coupons values from the given problem instance, and 

then, randomly distributing them into a random number of 

envelopes, by considering the hard constraints about the 

minimum number / sum of coupons. The number of generated 

initial solutions is equal to the population size (ps) parameter.  

Mutation mechanism of the algorithm consists of two 

operators, namely swap and shift, where the earlier swaps two 

coupons belonging to distinctive envelopes, while the later 

shifts a coupon from a given envelope to some other envelope, 

of the same candidate solution. In order to apply a number of 

swaps between different coupons of a given individual, the 

swap operator iterates through a loop for a number of 

iterations (as specified by sw parameter). During the course of 

a single iteration, initially, two distinct envelopes are selected 

randomly, and then, for swapping purposes, one random 

coupon is selected from each of these envelopes. The shift 

operator is also executed for several iterations, as specified by 

sh parameter. During the evolution of a given iteration, 

initially, two distinct envelopes are selected randomly, and 

then one random coupon is selected from the first envelope, 

and gets shifted to the second one. 

Evaluation of a given candidate solution is done using 

Equation (1), which, as described before, maximizes the total 

reward, by determining which combination of envelopes 

yields to the highest possible profit. Each member of the 

population has a certain number of envelopes of different 

types, and the sum of these envelope values denotes the fitness 

of the member. 

Selection of the parent that will take part in breading the next 

population is completed by using the Tournament Selection 

algorithm. This algorithm is a simple and an effective one, as 

it returns the fittest individual of some 𝑡𝑠 individuals picked 

at random from the population [9].  

Population update strategy mechanism replaces the worst fit 

member of the current population (i.e. it replaces the current 

worst solution from the population with the best picked from 

tournament size individuals). 

2) Pseudocode of the algorithm 

In abstract terms, as shown in Algorithm 1, the envisioned 

GA approach has 6 parameters, which can be used for fine 

tuning its performance for different problem complexities and 

sizes. Besides the default genetic algorithm parameters, such 

as population size (ps), maximum generations (mg) and 

tournament size (ts), the particular implementation at hand, 

uses three so called “intensity” parameters, namely swap 

mutate (sw) and shift mutate intensity (sh), for specifying the 

number of times a certain operator (i.e. swap or shift) will be 

applied when called upon. In addition, the algorithm uses a 

special parameter called the alternation frequency (af) to 

change the mutation operator from swapping to shifting and 

vice versa every af number of generations. 

At the very start of the algorithm, a population P of n 

individuals is created by using the procedure for creating the 

initial solution explained above. Next, in the repetitive phase 

of the algorithm, at each iteration, the following steps are 

undertaken: (1) evaluation of all individuals, (2) selection of 

the parents based on tournament selection and mutation over 

the operators (i.e. swap and shift) used in the running iteration, 

and (3) formation of the new population by replacing the 

individual with the worst fitness, with the mutated new 

individual if the fitness of the second is better. The algorithm 

terminates when the maximum number of foreseen generations 

is achieved. 

The GA algorithm is developed by using the C# 

programming language through the developing environment of 

MS Visual Studio 2015. 

B. Greedy Randomized Adaptive Search Procedure 

Another approach used for solving the DFCP problem is 

Greedy Randomized Adaptive Search Procedure (GRASP), 

which is a single-state metaheuristics algorithm built on 

concepts of constructing a feasible solution and then applying 

a local search heuristic. This algorithm was introduced by Feo 

& Resende [16] and, in overall, it is quite simple [15], and it 

can be characterized with two main steps, explicitly: (i) create 

a feasible solution by constructing from among the highest 

Algorithm 1 Steady State Genetic Algorithm 

Require: coupons C (N, vi, T, Cj, Sj, Rj), where i=1…N and 

j=1…T; population size ps; maximum generations mg; 

tournament size ts; swap mutate intensity sw; shift mutate 

intensity sh; operator alternation frequency af. 

1: P = {}; Best = ∅;  Worst = ∅; 

2: for ps times do 

3: 𝐶𝑟 = Random Individual (C) 

4: AssessFitness(𝐶𝑟 ) 

5: if  Worst == ∅ or Fitness(𝐶𝑟 ) < Fitness(Worst) then          

6: Worst = 𝐶𝑟  

7: P = P ∪ 𝐶𝑟  

8: for each generation until mg do 

9: 𝑃𝑤 = SelectWithReplacement(P),  

10: 𝑃𝑏 = TournamentSelection(P, ts),  

11: 𝐶𝑏  = Select best from 𝑃𝑏 

12: 𝐶𝑏  = Mutate(𝐶𝑏 , 𝑠𝑤, 𝑠ℎ, 𝑎𝑓) 

13: if Fitness(𝐶𝑏 ) < Fitness(Worst) then 

14: Worst = 𝐶𝑏  

15: SelectForDeath(𝑃𝑤 )  

16: P = P - 𝑃𝑤  

17: P = P ∪ 𝐶𝑏  

18: for each individual 𝑃𝑖 ∈ 𝑃 do 

19: AssessFitness(𝑃𝑖 ) 

20: if Best == ∅ or Fitness(𝑃𝑖 ) > Fitness(Best) then          

21: Best = 𝑃𝑖  

22: return Best 
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value (fitness) components, and (ii) do some hill climbing on 

feasible solution and choose the best one. 

1) Algorithm particularities 

The particular GRASP approach (Algorithm 2) that we 

implemented in this case can be configured by using four 

distinct parameters, such as: max iterations (mi), max local 

search iterations (mls) with no improvement, percentage of 

components (pc) chosen randomly, and envelope filling mode.  

While the first two parameters are common GRASP 

parameters, the pc parameter specifies the percentage of 

elements (components) to be considered when choosing them 

randomly from the whole group of the coupons. Further, the 

envelope filling mode parameter determines one of the three 

possible orders of using envelope types (as described below). 

Besides the representation, which is the same as in the case 

of GA approach, the other two main characteristics of the 

GRASP approach (see Algorithm 2), proposed in this paper 

are the solution construction procedure and the local search 

mechanism. The solution construction procedure (lines 3 to 

13 in Algorithm 2) initializes a solution by filling up the 

envelopes in a sequential order until no more coupons are left. 

Based on the order of consideration of the envelope types, 

with respect to the reward value, three different modes of 

solution construction are devised: (i) Consider envelopes with 

higher reward first, (ii) Consider envelopes with smaller 

reward first and (iii) Chose an envelope type at random. The 

order of inserting the coupons into envelopes is done based on 

a heuristic function, which is defined as the ratio between the 

coupon value and the minimal number of coupons needed to 

fill a given envelope type. When a coupon needs to be inserted 

into a given envelope, all the left coupons are sorted based on 

this heuristic value, and afterwards, the best pc percent of 

them are selected as candidates for getting into the current 

envelop. In the next step, one of the coupons from this set is 

selected at random (with uniform probability) for insertion 

into the current envelope. A given envelope is considered to 

be complete when it satisfies its minimum type constraints, 

and, when that is the case, a new envelope starts filling up.  

This process is repeated until all coupons are inserted in one 

of the envelopes.  

 The local search mechanism (lines 14 to 20 in algorithm 

2) uses a swap operator, which swaps two groups of coupons 

belonging to two distinct envelopes, where the selection of 

individual envelopes and the size of the groups is made at 

random. During the local search phase, the swap operator is 

applied repeatedly, until the foreseen number of iterations 

without improvement (as specified by mls parameter) is 

exceeded. 

The GRASP algorithm is developed by using Ruby on Rails 

programming language over RubyMine IDE. 

C. Description of the solution for the simple scenario 

In order to clarify the applicability of the presented 

approaches (i.e. GA and GRASP), in Tables 5 and 6, 

respectively, we present the solutions returned by them for the 

simple scenario of 15 coupons that was presented in the 

introduction section. As it can be seen in the respective tables, 

both approaches return equally optimal solutions, having the 

quality (i.e. total reward) of 5.5, which is also equal to the 

manual solution that was presented in the introduction section. 

Furthermore, both approaches produce solutions with four 

envelopes, though the difference lies in the type of used 

envelopes, where the GA approach uses two envelopes of type 

1, one envelope of type 2 and one envelope of type 3, whereas 

the GRASP approach uses one envelope of type 1 and three 

envelopes of type 2. Nevertheless, both approaches have been 

executed 10 times, therefore the particular solutions returned 

by them varies from one execution to the other one, but the 

quality of the solutions has been always the same (i.e. 5.5). 

Hence, this result should only be seen from a didactic 

perspective that serve only for the purpose of explanation of 

the structure of a given solution, while an extensive 

experimental study, as presented in the next section, is meant 

Algorithm 2 Greedy Randomized Adaptive Search 

Procedure 

Require: coupons C (N, vi, T, Cj, Sj, Rj), where i=1…N and 

j=1…T; max iterations mi; max local search iterations with 

no improvement mls; percentage of components chosen 

randomly pc; envelope filling mode. 

1: Best = ∅; 

2: repeat 

3: S = ∅; 

4: repeat 

5: E = ∅; 

6:  repeat 

9:  C’ = Select the best pc% coupons in C not yet 

inserted 

10: E = E ∪ coupon chosen uniformly at random 

from C’ based on mode 

11: until E is valid or no more coupons are 

available 

12:        S = S ∪ E 

13: until S is a complete solution 

14: for mls times do 

15: R = Apply the swap operator in a copy of S 

16: if Quality(R) > Quality(S) then 

17: S = R 

18: if Best == ∅ or Quality(S) > Quality(Best) then 

19: Best = S 

20: until mi is reached 

21: return Best 

# 
Type of 

envelope 
Reward (€) 

List of 

coupons 

Sum of 

envelope 

1 

2 

3 

4 

3 

2 

1 

1 

2 

1.5 

1 

1 

3,2,7,1,15,5 

6,7,8,5 

9,7,4 

10,12 

33 

26 

20 

22 

 Total reward: 5.5   

Table 5. A sample solution for the simple scenario of 15 

coupons returned by GA approach 

# 
Type of 

envelope 
Reward (€) 

List of 

coupons 

Sum of 

envelope 

1 

2 

3 

4 

2 

2 

2 

1 

1.5 

1.5 

1.5 

1 

10, 12, 3, 1 

7, 15, 4, 2 

7, 9, 6, 4 

7, 8, 5 

26 

28 

26 

20 

 Total reward: 5.5   

Table 6.  A sample solution for the simple scenario of 15 

coupons returned by GRASP approach 
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to express the level of effectivity and efficiency of the 

proposed approaches.  
 

V. Computational experiments 

In this section, we initially present a test set of 10 instances 

that are used for conducting the evaluations of the solution 

presented in this paper. Further, we show the computational 

results for tuning the parameter values of the proposed 

approach. After that, we compare the obtained results against 

the upper bound values that are within the reach, when 

relaxing individual hard constraints of the problem at hand. 

A. Test set 

In order to test the algorithm for various scenarios of the 

distribution of fiscal coupons, we have set up a test set that 

consist of 10 different instances, where the values of 

individual coupons are generated randomly. Table 2 shows the 

characteristics of individual instances, which includes 

instance name, number of coupons and the total value of all 

coupons. The instance name, in addition to problem 

abbreviation DFCP, also encompasses the number of coupons 

and the total value present in a particular instance, e.g. 

Instance DFCP_2h_3k contains 200 (2hekta - 2h) coupons 

with a total value of 3000 (3kilo - 3k) currency units.  

In practice, the value of a fiscal coupon ranges from very 

small amounts (e.g. a chewing gum might cost less than a euro) 

to large amounts (e.g. a technological appliance might cost 

several, dozens, hundreds or even thousands of euros). 

However, during a certain period of time (e.g. a month or a 

year quartile), the number of large value transactions (i.e. 

fiscal coupons) made by a person is usually much lower than 

the number of transactions with small values. Hence, in order 

to make the test instances more realistic, 30% of coupons are 

set to have larger values, which range from several up to 

dozens of currency units (e.g. euros).  

Furthermore, based on the constraints enforced in practical 

situations, such as in the case of Tax Authorities of the 

Republic of Kosovo [1], three envelope types are defined 

throughout all test instances. In general, an envelope type is 

described with three properties, namely the minimum number 

of coupons, the minimum sum of the coupons and the foreseen 

reward. In particular, the types of envelopes utilized in the test 

set are described in the following:  

Type1= {30, 250, 10},  

Type2= {40, 500, 15} and  

Type3= {50, 800, 20}.  

B. Upper bound limits 

In addition, in Table 7, we present the maximal reward that 

can be achieved per instance if individual problem constraints 

are relaxed (i.e. either the constraint for the sum or number of 

coupons in the envelope is not enforced). In case the constraint 

for the sum of coupons is relaxed (i.e. it is not taken into 

account), the maximal reward that can be achieved, in all 

instances, is when the envelopes are all of Type3 (i.e. the 

number of coupons is 50). On the other hand, when the 

constraint for the minimum number of coupons is relaxed, the 

best scenario, in all instances, is when all the envelopes are of 

Type1 (i.e. the minimum sum of coupons is 250). If the 

constraint for the minimum sum of coupons is relaxed then the 

formula for calculation of upper bound values is UB = [No. 

coupons] / [Min. no. of coupons per envelope type]*[Reward 

per envelope type], otherwise, if the constraint for the 

minimum number of coupons is relaxed the envisioned 

formula is UB = [Total value] / [Min. sum of coupons per 

envelope type]*[Reward per envelope type]. In the case of 

relaxation of the minimum sum of coupon constraint, a sample 

calculation of the upper bound value for instance 

DFCP_2h_2k (the sixth column in Table 7) is 

UB=200/50*20=80. Comparing the values in the sixth and the 

seventh column of Table 7, one can notice that the scenario of 

having envelopes of Type1 (i.e. the sum of coupons is 250) 

while relaxing the constraint for the minimum number of 

coupons, is the best scenario for all instances in the test set. 

Hence, in the following section, we use these values as Upper 

Bound (UB) limits (i.e. benchmark values) for evaluating the 

results that are obtained by the introduced solution in this 

paper. 

C. Parameter settings 

In order to fine tune the values of the parameters of the GA 

and GRSAP approaches, a systematic experimentation is 

performed by using the complete test set. Initially, based on 

some preliminary experimentation, for each parameter, a 

range, consisting of several best performing values, is selected. 

Then, for each selected value, the algorithm is executed for 

each test instance 10 times. As a result, for each single 

parameter, the value that on average produces better results 

than the other considered values, is adapted for the final round 

Instance name 

 

Instance details 

Envelope details 

Number of coupons Sum of coupons 

Number 

of coupons 
Total value 30 40 50 250 500 800 

DFCP_2h_2k 

DFCP_2h_3k 

DFCP_5h_5k 

DFCP_5h_6k 

DFCP_1k_10k 

DFCP_1k_11k 

DFCP_2k_20k 

DFCP_2k_22k 

DFCP_5k_50k 

DFCP_5k_55k 

200 

200 

500 

500 

1000 

1000 

2000 

2000 

5000 

5000 

2000 

3000 

5000 

6000 

10000 

11000 

20000 

22000 

50000 

55000 

60 

60 

160 

160 

330 

330 

660 

660 

1660 

1660 

75 

75 

180 

180 

375 

375 

750 

750 

1875 

1875 

80 

80 

200 

200 

400 

400 

800 

800 

2000 

2000 

80 

120 

200 

240 

400 

440 

800 

880 

2000 

2200 

60 

90 

150 

180 

300 

330 

600 

660 

1500 

1650 

50 

80 

120 

150 

250 

280 

500 

550 

1250 

1380 

Table 7. Test set details and maximal reward when relaxing individual constraints 
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of the experimentation that is done with the aim of evaluating 

the performance of the proposed algorithm. In this section, we 

average results over the complete data set, by using the 

average result of a given instance, that runs for 10 times when 

experimenting with a specified value of a given parameter. 

For all six parameters of the GA approach, during the 

preliminary experimentation, five best performing values are 

selected.  As depicted in Figure 2, the best performing values 

for the maximum generations and population size parameters 

are 10000 and 5000, respectively. Further increasing the 

values of these two parameters only costs longer computation 

  

Figure 2. GA parameter settings 
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time, while no further improvement can be reached. The best 

value for the tournament size parameter is 20, while for the 

swap and mutation intensities, the best values are 15 and 20 

respectively. In regard to the alternation of the operators, 

based on the experiments with operator alternation frequency 

(oaf) parameter, whose best value is 10, it is obvious that it is 

better to alternate (between shifting and swapping) more 

frequently. In terms of the computation time, the higher the 

value of a given GA parameter is, the slower the algorithm 

becomes, except for the parameter of operator alternation 

frequency, whose values seem not to make any noticeable 

impact in this regard, as the maximal difference, from the 

fastest scenario (oaf=50) to the slowest one (oaf=10) is only 

0.12 seconds. 

On the other hand, the maximum iterations parameter of the 

GRASP approach has been tested against four different values, 

and, as it can be seen in Figure 3, the best scenario (in terms 

of fitness and time) is when the value of this parameter is 3. 

Further, the experiments with the parameter of maximum local 

search iterations show that the more iterations without 

improvement runs the GRASP algorithm, the better the 

quality of the solutions becomes. This is also the case of the 

parameter of percentage of components, where its best (tested) 

value is 10. In terms of mode of envelope filling, the 

experiments show that the best way to fill the envelope is the 

random one. In regard to the computation time, in general the 

higher the value of the parameter the better the computation 

time, expect normally for the maximum iterations parameter. 

Also, the random way of envelope filling, in average, makes 

the GRASP approach run faster than any of the two other 

modes. 

A. Comparison of results against upper bounds  

In Table 8, we present the averaged results for individual 

instances over ten executions in each of the two algorithms 

(i.e. GA and GRASP). Further, the results are compared 

against the upper bound values that were described in the 

previous section. In general, it can be noticed that the GA 

approach produces better results than the GRASP approach 

for smaller instances with up to 1,000 coupons and a sum of 

up to 11,000 currency units. Whilst, for larger instances, the 

GRASP approach shows to perform better than the GA 

approach, where the difference, in favor of GRASP approach, 

goes up to more than 6.61% for instance DFCP_2k_22k, 

except for instance DFCP_5k_50k, where the difference, in 

favour of GA approach, is 2.84%. When the results are 

averaged over the whole test set, the gap of GA and GRASP 

from upper bound values is 29.16% and 32.01%, respectively. 

This gap should be considered as relative, since the upper 

bound values do not represent actual solutions to the problem, 

but only the solutions to the relaxed version of it. With regard 

to comparisons of the two approaches presented in this paper, 

the experimental results show that the GA approach, in overall, 

has an advantage of 3.74% in comparison to the GRASP 

approach. 

Table 9 shows the details concerning the best returned 

results over all executions of both algorithms. As in the case 

of the averaged results, also in the case of the best results, the 

GA approach performs better than the GRASP approach for 

smaller instances, whereas for larger instances the GRASP 

approach is better, which drives up to almost 13% for instance 

 

Figure 3. GRASP parameter settings 
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DFCP_5k_55k. Further, in average, the best results that can 

be achieved by the two approaches, in comparison to upper 

bound values, have the gap of 24.99% and 25.15%,  

respectively. This shows that for the best case scenario the 

GRASP approach slightly outperforms the GA approach for 

an average margin of 0.16%. Nonetheless, the GA approach is 

also quite competitive to the GRASP approach, since its 

results are either better or equal in 6 (out of 10) instances. 

In Table 10, we show the average computation times 

(derived from 10 executions) for both approaches. The results 

show that the GA and GRASP approaches need about 27.79 

and 13.21 seconds, respectively, to solve the DFCP problem. 

These results indicate that, in overall, the GRASP approach is 

about 2.1 times faster than the GA approach for the envisioned 

test set. Nonetheless, it is evident that for smaller instances, 

the GA approach takes a considerably longer computation 

time than GRASP approach, which, in the worst case, can be 

up to 67 times slower.  

The worst case execution scenario of GA and GRASP, always 

remains under a computation time of less than 40 and 60 

seconds, respectively. This shows that both algorithms can be 

used in practice, where generating good quality solutions 

would enable the user to gain more revenue from the process 

of coupon collection that is applied in tens of countries around 

the globe (e.g. Republic of Kosovo [1]). 

VI.  Conclusion and Future Work 

In this paper, we introduced a new problem for modelling 

the optimal distribution of fiscal coupons and devised a MILP 

mathematical formulation. Further, we presented two 

metaheuristic approaches based on GA and GRASP 

algorithms, which are able to solve the formulated problem at 

hand in matter of few seconds by using standard computing 

devices. In addition, a newly introduced test was used for 

benchmarking purposes, where it was shown that both 

approaches produce competitive results. On average, the GA 

approach is better than GRASP approach for around 3.74%, 

although, with regard to best returned results, the GRASP 

approach returns slightly better results than the GA approach 

for 0.16%, if the results are averaged over the complete test 

set.  

For additional comparison, as part of future work, we plan 

to develop exact methods from the field of dynamic 

programming and investigate hybridization of the presented 

approaches, as well as utilization of constraint satisfaction 

problem (CSP) techniques within the existing metaheuristics 

for the envisioned problem. 

Acknowledgment 

Instance name Upper 

bound (UB) 

GA GRASP GA vs. UB 

(%) 

GRASP vs. 

UB (%) 

GRASP vs. 

GA (%) 

DFCP_2h_2k 80 61.82 53.0 22.73 33.75 14.26 

DFCP_2h_3k 120 71.26 70.0 40.62 41.67 1.77 

DFCP_5h_5k 200 159.57 146.0 20.21 27.00 8.50 

DFCP_5h_6k 240 172.10 152.0 28.29 36.67 11.68 

DFCP_1k_10k 400 297.20 289.5 25.70 27.63 2.59 

DFCP_1k_11k 440 317.77 300.0 27.78 31.82 5.59 

DFCP_2k_20k 800 574.25 582.0 28.22 27.25 -1.35 

DFCP_2k_22k 880 613.43 625.0 30.29 28.98 -1.89 

DFCP_5k_50k 2000 1348.26 1310.0 32.59 34.50 2.84 

DFCP_5k_55k 2200 1427.17 1521.5 35.13 30.84 -6.61    
Avg. 29.16 32.01 3.74 

Table 8.   Results of GA and GRASP versus upper bound limits (averaged over ten runs)  

Instance name Upper 

Bound (UB) 

GA GRASP GA vs. UB 

(%) 

GRASP vs. 

UB (%) 

GRASP vs. 

GA (%) 

DFCP_2h_2k 80 65 60 18.75 25.00 7.69 

DFCP_2h_3k 120 75 75 37.50 37.50 0.00 

DFCP_5h_5k 200 170 160 15.00 20.00 5.88 

DFCP_5h_6k 240 185 165 22.92 31.25 10.81 

DFCP_1k_10k 400 330 330 17.50 17.50 0.00 

DFCP_1k_11k 440 345 330 21.59 25.00 4.35 

DFCP_2k_20k 800 600 660 25.00 17.50 -10.00 

DFCP_2k_22k 880 645 660 26.70 25.00 -2.33 

DFCP_5k_50k 2000 1365 1435 31.75 28.25 -5.13 

DFCP_5k_55k 2200 1470 1660 33.18 24.55 -12.93    
Avg. 24.99 25.15 -0.16 

Table 9.  Results of GA and GRASP versus upper bound limits (best run scenario) 

Instance name GA (S) GRASP 

(S) 

GRASP/GA 

DFCP_2h_2k 21.44 0.32 67.09 

DFCP_2h_3k 21.01 0.32 65.89 

DFCP_5h_5k 21.53 1.01 21.24 

DFCP_5h_6k 22.06 1.01 21.85 

DFCP_1k_10k 26.37 2.86 9.21 

DFCP_1k_11k 24.41 2.90 8.42 

DFCP_2k_20k 30.21 9.16 3.30 

DFCP_2k_22k 32.46 8.01 4.05 

DFCP_5k_50k 39.95 59.57 0.67 

DFCP_5k_55k 38.43 46.90 0.82 

Avg. 27.79 13.21 2.10 

Table 10. Computation time of GA and GRASP 
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