
International Journal of Computer Information Systems and Industrial Management Applications.

ISSN 2150-7988 Volume 10 (2018) pp. 143-153

© MIR Labs, www.mirlabs.net/ijcisim/index.html

MIR Labs

Received: 7 Dec. 2017; Acceptance: 29 April, 2018; Published: 28 May 2018

Distribution of fiscal coupons via Genetic

Algorithms and Greedy Randomized Adaptive

Search Procedure

Kadri Sylejmani1, Qëndresë Hyseni1, Sule Yildirim2, Agon Qurdina1, Lekë Mula1 and Bujar Krasniqi1*

1 Faculty of Electrical and Computer Engineering, University of Prishtina,

Bregu i Diellit p.n., Prishtinë 10000, Kosovo

{kadri.sylejmani, bujar.krasniqi}@uni-pr.edu, {qendrese.hyseni, agon.qurdina, leke.mula}@studentet.uni-pr.edu

2 Department of Information Security and Communication Technology, Norwegian University of Science and Technology,

Teknologivegen 22, 2802 Gjøvik, Norway,

sule.yildirim@ntnu.no

Abstract: When customers buy goods or services from business

entities they are usually given a receipt that is known with the

name fiscal or tax coupon, which, among the others, contains

details about the value of the transaction. In some countries, the

fiscal coupons can be collected during a certain period of time

and, at the end of the collection period, they can be handed over

to the tax authorities in exchange for a reward, whose price

depends on the number of collected coupons and the sum of their

values. From the optimization perspective, this incentive

becomes interesting when, both the number of coupons and the

sum of their value is large. Hence, in this paper, we model this

problem in mathematical terms and devise a test set that can be

used for benchmarking purposes. Furthermore, we solve this

problem by means of two metaheuristics, namely Genetic

Algorithms and Greedy Randomized Adaptive Search

Procedure. Finally, we evaluate the proposed algorithms by

comparing their results against the relaxed versions of the

proposed problem. The computational experiments indicate that

both approaches are competitive, as they can be used to solve

realistic problems in a matter of few seconds by utilizing

standard personal computers.

Keywords: Distribution of fiscal coupons, Mathematical

Modelling, Genetic Algorithms, Greedy Randomized Adaptive

Search Procedure.

I. Introduction

The tax authorities of many countries try to find alternative

ways to enforce business entities (e.g. shops, restaurants,

travel agencies, etc.) to fully declare the profit they gain from

their business activities, so that they have to pay taxes

accordingly. The tax authorities from several countries, like

for example Republic of Kosovo [1] or State of Minnesota in

USA [2], utilize the strategy of encouraging the customers to

collect the fiscal coupons when they do any kind of transaction

with business entities. The collected coupons [1] can be

* Corresponding author

enveloped and submitted to the tax authorities in exchange of

a reward that depends on the number and the total value of the

fiscal coupons enclosed. In general, depending on the actual

rules put in place by specific tax authorities, there can be

different types of envelopes that can be submitted. Obviously,

envelopes with more coupons and with higher total values,

have higher rewards.

In more formal terms, in the case of the Distribution of

Fiscal Coupons Problem (DFCP), each person has N number

of coupons (see Figure 1) collected for a period of time (e.g. a

three-month period). At the end of the collection period, the

coupons will be distributed into a T number of envelopes by

the person who possesses the coupons. The person has to make

a decision related to which coupon is placed in which

envelope. Each coupon has a value and consequently it should

be placed in the envelope ultimately where the sum of values

of the coupons in the envelope will lead to an overall higher

reward. Each coupon can only be placed into a single envelope.

The number of coupons in each envelope cannot be less than

a minimum, whereas also the sum of all coupons cannot fall

under minimum value. The achievable reward from each

envelope type is predefined based on the number and values

of the coupons placed inside it.

For illustrative purposes, in Tables 1, 2 and 3, we present a

Figure 1. The schematic view of the fiscal coupons

problem

 144

sample scenario of a fiscal coupons distribution problem.

Table 1 depicts the basic problem details, such as number of

coupons, number of types of envelopes, the values of

individual coupons and the total values of coupons. In Table

2, we present the details about types of envelopes, in terms of

applicable constraints (i.e. minimum number of coupons and

value) and achievable reward. Whilst, in Table 3, we present

a possible solution (i.e. distribution of fiscal coupons into

envelopes) to this actual problem, where it can be seen that the

total reward is 5.5 €.

Envelope type Minimum

coupons

Minimum

value (€)

Reward

(€)

1

2

3

2

4

6

20

25

30

1

1.5

2

Table 2. Types of envelopes

No. of envelope Type of

envelope

Reward (€) List of

coupons

1

2

3

4

1

1

2

3

1

1

1.5

2

5, 15

8, 12

7, 7, 7, 9

1, 2, 3, 4,

4, 6, 10

 Total

reward:
5.5

Table 3. Sample solution

The significance of the work in this paper can be underlined

by outlining its main contributions, which are: (i) introduction

of a new optimization problem for the scientific community

by presenting a mathematical formulation, as well as a test set

that can be used for bench-marking purposes, (ii) development

of two metaheuristic based solutions to the newly introduced

problem, where one of them is based on Genetic Algorithms,

whereas the other one is based on Greedy Randomized

Adaptive Search Procedure, and (iii) presentation of the

systematic computation results that compare the performance

of the proposed algorithms against solutions of the relaxed

version of the envisioned problem, which can be used as

benchmark results for future solutions.

The remainder of this paper is structured as is in the

following. Section 2 presents a literature review of the related

problems and their respective solution approaches. Next, in

Section 3, we present the mathematical modelling of the

DFCP problem as an Integer Linear Programming Problem.

In Section 4, we present the proposed approaches for solving

the DFCP problem, while in Section 5, we show computation

results of the proposed approaches against a data set of 10

instances. Finally, in Section 6, we conclude the paper and

present our view for the subsequent future work.

II. State of the art

In the classical Knapsack Problem (KP) there is a set of items

and a container (knap-sack) that has to be used for carrying a

subset of items. Each item is characterized with two properties,

namely value and weight, whereas the container has a single

property, which is the maximum weight it can carry. The goal

is to place a subset of items into the container such that the

total value of the placed items is maximized subject to the

capacity of the container. The Multiple Knapsack Problem

(MKP) extends the KP problem by allowing multiple

containers of the same capacity [3], whereas the Distributed

Multiple Knapsack Problem (DMKP) supports containers of

varying capacities, which can be modelled as a general

Distributed Constraint Optimization Problem (DCOP) [4] [5]

[6] [7]. The DCOP problem was solved by using memory-

bounded and asynchronous algorithms that are based on the

search strategy of ADOPT, which is a technique that alternates

between best-first search and depth-first branch-and-bound

search [3]. Another approach for DCOP problem is a

distributed algorithm called optimal asynchronous partial

overlay, which is a partial centralization technique known as

cooperative mediation. The basic idea of this search technique

is to focus the search process within areas of a sub problems

that overlap, and then increase the size of the search horizon

as the smaller sub problems gets solved [5]. Another

extension of MKP is the generalized quadratic multiple

knapsack problem (GQMKP) [8] [9], which introduces three

new features: (i) quadratic component that allows extra profit

in case two items are selected jointly, (ii) setups that enable

grouping items into classes, where each class is characterized

with a fixed cost and capacity, and (iii) consideration of

knapsack preferences for the items. The GQMKP was

recently solved by using a memetic approach [8] that

combines a back-bone crossover operator with a simulated

annealing algorithm that utilizes a neighborhood exploration

mechanism consisting of multiple operators.

No. of coupons No. of

types of

envelopes

Coupon

values (€)

Sum of

all

coupons

(€)

15 3 7, 4, 9, 15, 2,

4, 6, 3, 10, 5,

7, 8, 1, 12, 7

100

Table 1. Basic details of fiscal coupons problem

Problem Objective Capacity

constraints

No. of.

Containers

No. of

features

per item

No. of

features

per

container

Preference

of items

for

containers

Relation

between

items

All

items

to be

selected

Upper

limit

Lower

limit

KP

MKP

DMKP

GQMKP

BPP

RCP

DFCP

Max

Max

Max

Max

Min

Min

Max

Yes

Yes

Yes

Yes

Yes

Yes

No

No

Yes

Yes

Yes

No

No

Yes

1

>1

>1

>1

>1

>1

>1

2

2

2

3

1

1

1

1

1

1

1

1

3

3

No

No

No

Yes

No

No

No

No

No

No

Yes

No

No

No

No

No

No

No

Yes

Yes

No

Table 4. Comparison of features of various related problems

Distribution of fiscal coupons via Genetic Algorithms and Greedy Randomized Adaptive Search Procedure 145

Another related problem is the Bin Packing Problem (BPP),

where a set of items need to be placed into a set of containers

(bins). Each item has a weight property, whereas each

container has a maximum capacity property. The goal is to

place each item into a container such that the number of

containers used is minimized. In comparison to KP problem,

where only a subset of items can be picked, in the BPP

problem all items have to be picked up [10]. Further, the two-

dimensional bin packing problem is used in situations where

a set of rectangle objects have to be accommodated into larger

standardized rectangles with the aim of minimizing the waste

(i.e. leftover from the standardized rectangles when all

rectangles are placed). Lodi et al. [11] did a survey of different

modellings for the two-dimensional BPP and described a

plethora of approaches utilized in the literature.

An additional related problem is the Rack Configuration

Problem (RCP), where there is a set of items (electronic cards)

that need to be placed (connected) into a set of containers

(racks). Each item has a single property (i.e. power it requires),

whereas each container has three properties, namely maximal

power it can supply, number of connectors and the price. The

goal is to plug in all the electronic cards into a set of racks with

the smallest cost possible [12]. This problem has been tackled

by using constraint satisfaction problem techniques, where the

issue of reducing the symmetry in RCP is considered. Further,

the primal and dual model of RCP are integrated in order to

produce better results [12].

In Table 4, we compare the newly proposed DFCP problem

against the above presented related problems, by outlining

different characteristics of the individual problems, such as:

type of objective function, capacity constraints (i.e.

upper/lower limit), the number of containers, the number of

features per item/container, and whether all items need to be

selected. By analyzing the details given in the table, one can

conclude that DFCP problem is closely related to RCP

problem, in terms of number of containers and features per

item/container, but differs in terms of the objective function,

capacity constraints and in the aspect whether all items need

to be selected.

In [13], we presented a steady-state genetic algorithm for

solving the DFCP problem, where the search space is explored

by using a combination of two mutation operators, namely

swap (that interchanges two coupons belonging to distinct

envelopes) and shift (that shits a given coupon from one

envelope to another one). More details of this approach are

given in the section of Solution Approaches. To the best of

authors’ knowledge, except our work presented in [9], there is

no any problem in the literature that models or solves the

problem of the distribution of fiscal coupons, hence in the

following section, we present a mathematical modelling of

this problem, along with the proposed solutions.

III. Mathematical modeling

The mathematical modelling for the problem of the optimal

distribution of the fiscal coupons is formulated as an Integer

Linear Programming (ILP) model that has a range of

parameters and a couple of decision variables, as specified

below:

Parameters:

 N – Number of coupons

 vi – Value of coupon i, i=1, …, N

 T – Number of types of envelopes

Ck – Minimum number of coupons in envelope of

type k, k=1, …, T

Sk – Minimum sum of all coupons in envelope of

type k, k=1, …, T

Rk – Achievable reward from envelope of type k,

k=1, …, T

Decision variables:

 M – Number of envelopes

xjk -equals 1, if envelope j is of type k, otherwise it

is 0, j=1, …, M, k=1, …, T

yij -equals 1, if coupon i is placed in envelope j,

otherwise it is 0, i=1, …, N, j=1, …, M,

Objective function:

 𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 ∑ ∑ 𝑅𝑘𝑥𝑗𝑘

𝑇

𝑘=1

𝑀

𝑗=1
 (1)

Constraints:

 ∑ 𝑦𝑖𝑗𝑥𝑗𝑘 ≥ 𝐶𝑘

𝑁

𝑖=1
,𝑗 = 1, … , 𝑀,𝑘 = 1, … , 𝑇 (2)

 ∑ 𝑣𝑖𝑦𝑖𝑗𝑥𝑗𝑘 ≥ 𝑆𝑘

𝑁

𝑖=1
,𝑗 = 1, … , 𝑀,𝑘 = 1, … , 𝑇 (3)

 ∑ 𝑦𝑖𝑗 ≤ 1
𝑁

𝑖=1
,𝑗 = 1, … , 𝑀 (4)

 ∑ 𝑥𝑗𝑘 = 1,
𝑀

𝑗=1
 𝑘 = 1, … , 𝑇 (5)

In the mathematical formulation presented above, Equation (1)

denotes the objective function of the problem at hand, which

is maximizing the total reward, by determining which

combination of envelopes yields to the highest possible profit.

Constraints (2) and (3) ensure the validity of envelopes in

terms of the requirement for the minimum number of coupons

and the minimum sum of their values, respectively. Constraint

(4) guarantees that each single coupon is inserted into at most

one envelope, whilst Constraint (5) makes sure that each

single envelope can belong to only one particular type of

envelope.

IV. Solution approaches

In this section, we present the two approaches designed for

solving the DFCP problem, where the first one is based on

Genetic Algorithms (GA), whereas the second one is based on

Grady Randomized Adaptive Search Procedure (GRASP).

A. Genetic algorithms

In this implementation, we use the Steady State approach of

Genetic Algorithms, which was popularized by Whitley &

Kauth [14]. Its main idea, compared to the traditional

generational approach, is to update the population in a slight

manner rather than all at one time. The algorithm iteratively

breeds a new child or two, assesses their fitness, and then

restores them directly into the population itself, slaying off

some preexisting individuals to make room for them. The

Steady-State Genetic Algorithm has two essential features.

First, it uses half the memory of a standard genetic algorithm,

 146

because there is only one population at a time. Second, it is

more exploitative compared to a generational approach [15].

1) Algorithm particularities

The particular details of the Steady-State Genetic

Algorithm implemented here, can be summarized as in the

following:

Representation of a given candidate solution is made as a list

of lists, where the size of the main list corresponds to the

number of assigned envelopes M, whereas each single

member of the main list is also a list that corresponds to the

number of coupons ni placed inside a given envelope i. A

sample representation of a given solution is: 𝑆 =

{𝐸1, 𝐸2, … , 𝐸𝑖 , … , 𝐸𝑀}, where 𝐸𝑖 = {𝐶1, 𝐶2, … , 𝐶𝑛𝑖
}.

Initialization of a given candidate solution begins by reading

all the coupons values from the given problem instance, and

then, randomly distributing them into a random number of

envelopes, by considering the hard constraints about the

minimum number / sum of coupons. The number of generated

initial solutions is equal to the population size (ps) parameter.

Mutation mechanism of the algorithm consists of two

operators, namely swap and shift, where the earlier swaps two

coupons belonging to distinctive envelopes, while the later

shifts a coupon from a given envelope to some other envelope,

of the same candidate solution. In order to apply a number of

swaps between different coupons of a given individual, the

swap operator iterates through a loop for a number of

iterations (as specified by sw parameter). During the course of

a single iteration, initially, two distinct envelopes are selected

randomly, and then, for swapping purposes, one random

coupon is selected from each of these envelopes. The shift

operator is also executed for several iterations, as specified by

sh parameter. During the evolution of a given iteration,

initially, two distinct envelopes are selected randomly, and

then one random coupon is selected from the first envelope,

and gets shifted to the second one.

Evaluation of a given candidate solution is done using

Equation (1), which, as described before, maximizes the total

reward, by determining which combination of envelopes

yields to the highest possible profit. Each member of the

population has a certain number of envelopes of different

types, and the sum of these envelope values denotes the fitness

of the member.

Selection of the parent that will take part in breading the next

population is completed by using the Tournament Selection

algorithm. This algorithm is a simple and an effective one, as

it returns the fittest individual of some 𝑡𝑠 individuals picked

at random from the population [9].

Population update strategy mechanism replaces the worst fit

member of the current population (i.e. it replaces the current

worst solution from the population with the best picked from

tournament size individuals).

2) Pseudocode of the algorithm

In abstract terms, as shown in Algorithm 1, the envisioned

GA approach has 6 parameters, which can be used for fine

tuning its performance for different problem complexities and

sizes. Besides the default genetic algorithm parameters, such

as population size (ps), maximum generations (mg) and

tournament size (ts), the particular implementation at hand,

uses three so called “intensity” parameters, namely swap

mutate (sw) and shift mutate intensity (sh), for specifying the

number of times a certain operator (i.e. swap or shift) will be

applied when called upon. In addition, the algorithm uses a

special parameter called the alternation frequency (af) to

change the mutation operator from swapping to shifting and

vice versa every af number of generations.

At the very start of the algorithm, a population P of n

individuals is created by using the procedure for creating the

initial solution explained above. Next, in the repetitive phase

of the algorithm, at each iteration, the following steps are

undertaken: (1) evaluation of all individuals, (2) selection of

the parents based on tournament selection and mutation over

the operators (i.e. swap and shift) used in the running iteration,

and (3) formation of the new population by replacing the

individual with the worst fitness, with the mutated new

individual if the fitness of the second is better. The algorithm

terminates when the maximum number of foreseen generations

is achieved.

The GA algorithm is developed by using the C#

programming language through the developing environment of

MS Visual Studio 2015.

B. Greedy Randomized Adaptive Search Procedure

Another approach used for solving the DFCP problem is

Greedy Randomized Adaptive Search Procedure (GRASP),

which is a single-state metaheuristics algorithm built on

concepts of constructing a feasible solution and then applying

a local search heuristic. This algorithm was introduced by Feo

& Resende [16] and, in overall, it is quite simple [15], and it

can be characterized with two main steps, explicitly: (i) create

a feasible solution by constructing from among the highest

Algorithm 1 Steady State Genetic Algorithm

Require: coupons C (N, vi, T, Cj, Sj, Rj), where i=1…N and

j=1…T; population size ps; maximum generations mg;

tournament size ts; swap mutate intensity sw; shift mutate

intensity sh; operator alternation frequency af.

1: P = {}; Best = ∅; Worst = ∅;

2: for ps times do

3: 𝐶𝑟 = Random Individual (C)

4: AssessFitness(𝐶𝑟)

5: if Worst == ∅ or Fitness(𝐶𝑟) < Fitness(Worst) then

6: Worst = 𝐶𝑟

7: P = P ∪ 𝐶𝑟

8: for each generation until mg do

9: 𝑃𝑤 = SelectWithReplacement(P),

10: 𝑃𝑏 = TournamentSelection(P, ts),

11: 𝐶𝑏 = Select best from 𝑃𝑏

12: 𝐶𝑏 = Mutate(𝐶𝑏 , 𝑠𝑤, 𝑠ℎ, 𝑎𝑓)

13: if Fitness(𝐶𝑏) < Fitness(Worst) then

14: Worst = 𝐶𝑏

15: SelectForDeath(𝑃𝑤)

16: P = P - 𝑃𝑤

17: P = P ∪ 𝐶𝑏

18: for each individual 𝑃𝑖 ∈ 𝑃 do

19: AssessFitness(𝑃𝑖)

20: if Best == ∅ or Fitness(𝑃𝑖) > Fitness(Best) then

21: Best = 𝑃𝑖

22: return Best

Distribution of fiscal coupons via Genetic Algorithms and Greedy Randomized Adaptive Search Procedure 147

value (fitness) components, and (ii) do some hill climbing on

feasible solution and choose the best one.

1) Algorithm particularities

The particular GRASP approach (Algorithm 2) that we

implemented in this case can be configured by using four

distinct parameters, such as: max iterations (mi), max local

search iterations (mls) with no improvement, percentage of

components (pc) chosen randomly, and envelope filling mode.

While the first two parameters are common GRASP

parameters, the pc parameter specifies the percentage of

elements (components) to be considered when choosing them

randomly from the whole group of the coupons. Further, the

envelope filling mode parameter determines one of the three

possible orders of using envelope types (as described below).

Besides the representation, which is the same as in the case

of GA approach, the other two main characteristics of the

GRASP approach (see Algorithm 2), proposed in this paper

are the solution construction procedure and the local search

mechanism. The solution construction procedure (lines 3 to

13 in Algorithm 2) initializes a solution by filling up the

envelopes in a sequential order until no more coupons are left.

Based on the order of consideration of the envelope types,

with respect to the reward value, three different modes of

solution construction are devised: (i) Consider envelopes with

higher reward first, (ii) Consider envelopes with smaller

reward first and (iii) Chose an envelope type at random. The

order of inserting the coupons into envelopes is done based on

a heuristic function, which is defined as the ratio between the

coupon value and the minimal number of coupons needed to

fill a given envelope type. When a coupon needs to be inserted

into a given envelope, all the left coupons are sorted based on

this heuristic value, and afterwards, the best pc percent of

them are selected as candidates for getting into the current

envelop. In the next step, one of the coupons from this set is

selected at random (with uniform probability) for insertion

into the current envelope. A given envelope is considered to

be complete when it satisfies its minimum type constraints,

and, when that is the case, a new envelope starts filling up.

This process is repeated until all coupons are inserted in one

of the envelopes.

 The local search mechanism (lines 14 to 20 in algorithm

2) uses a swap operator, which swaps two groups of coupons

belonging to two distinct envelopes, where the selection of

individual envelopes and the size of the groups is made at

random. During the local search phase, the swap operator is

applied repeatedly, until the foreseen number of iterations

without improvement (as specified by mls parameter) is

exceeded.

The GRASP algorithm is developed by using Ruby on Rails

programming language over RubyMine IDE.

C. Description of the solution for the simple scenario

In order to clarify the applicability of the presented

approaches (i.e. GA and GRASP), in Tables 5 and 6,

respectively, we present the solutions returned by them for the

simple scenario of 15 coupons that was presented in the

introduction section. As it can be seen in the respective tables,

both approaches return equally optimal solutions, having the

quality (i.e. total reward) of 5.5, which is also equal to the

manual solution that was presented in the introduction section.

Furthermore, both approaches produce solutions with four

envelopes, though the difference lies in the type of used

envelopes, where the GA approach uses two envelopes of type

1, one envelope of type 2 and one envelope of type 3, whereas

the GRASP approach uses one envelope of type 1 and three

envelopes of type 2. Nevertheless, both approaches have been

executed 10 times, therefore the particular solutions returned

by them varies from one execution to the other one, but the

quality of the solutions has been always the same (i.e. 5.5).

Hence, this result should only be seen from a didactic

perspective that serve only for the purpose of explanation of

the structure of a given solution, while an extensive

experimental study, as presented in the next section, is meant

Algorithm 2 Greedy Randomized Adaptive Search

Procedure

Require: coupons C (N, vi, T, Cj, Sj, Rj), where i=1…N and

j=1…T; max iterations mi; max local search iterations with

no improvement mls; percentage of components chosen

randomly pc; envelope filling mode.

1: Best = ∅;

2: repeat

3: S = ∅;

4: repeat

5: E = ∅;

6: repeat

9: C’ = Select the best pc% coupons in C not yet

inserted

10: E = E ∪ coupon chosen uniformly at random

from C’ based on mode

11: until E is valid or no more coupons are

available

12: S = S ∪ E

13: until S is a complete solution

14: for mls times do

15: R = Apply the swap operator in a copy of S

16: if Quality(R) > Quality(S) then

17: S = R

18: if Best == ∅ or Quality(S) > Quality(Best) then

19: Best = S

20: until mi is reached

21: return Best

Type of

envelope
Reward (€)

List of

coupons

Sum of

envelope

1

2

3

4

3

2

1

1

2

1.5

1

1

3,2,7,1,15,5

6,7,8,5

9,7,4

10,12

33

26

20

22

 Total reward: 5.5

Table 5. A sample solution for the simple scenario of 15

coupons returned by GA approach

Type of

envelope
Reward (€)

List of

coupons

Sum of

envelope

1

2

3

4

2

2

2

1

1.5

1.5

1.5

1

10, 12, 3, 1

7, 15, 4, 2

7, 9, 6, 4

7, 8, 5

26

28

26

20

 Total reward: 5.5

Table 6. A sample solution for the simple scenario of 15

coupons returned by GRASP approach

 148

to express the level of effectivity and efficiency of the

proposed approaches.

V. Computational experiments

In this section, we initially present a test set of 10 instances

that are used for conducting the evaluations of the solution

presented in this paper. Further, we show the computational

results for tuning the parameter values of the proposed

approach. After that, we compare the obtained results against

the upper bound values that are within the reach, when

relaxing individual hard constraints of the problem at hand.

A. Test set

In order to test the algorithm for various scenarios of the

distribution of fiscal coupons, we have set up a test set that

consist of 10 different instances, where the values of

individual coupons are generated randomly. Table 2 shows the

characteristics of individual instances, which includes

instance name, number of coupons and the total value of all

coupons. The instance name, in addition to problem

abbreviation DFCP, also encompasses the number of coupons

and the total value present in a particular instance, e.g.

Instance DFCP_2h_3k contains 200 (2hekta - 2h) coupons

with a total value of 3000 (3kilo - 3k) currency units.

In practice, the value of a fiscal coupon ranges from very

small amounts (e.g. a chewing gum might cost less than a euro)

to large amounts (e.g. a technological appliance might cost

several, dozens, hundreds or even thousands of euros).

However, during a certain period of time (e.g. a month or a

year quartile), the number of large value transactions (i.e.

fiscal coupons) made by a person is usually much lower than

the number of transactions with small values. Hence, in order

to make the test instances more realistic, 30% of coupons are

set to have larger values, which range from several up to

dozens of currency units (e.g. euros).

Furthermore, based on the constraints enforced in practical

situations, such as in the case of Tax Authorities of the

Republic of Kosovo [1], three envelope types are defined

throughout all test instances. In general, an envelope type is

described with three properties, namely the minimum number

of coupons, the minimum sum of the coupons and the foreseen

reward. In particular, the types of envelopes utilized in the test

set are described in the following:

Type1= {30, 250, 10},

Type2= {40, 500, 15} and

Type3= {50, 800, 20}.

B. Upper bound limits

In addition, in Table 7, we present the maximal reward that

can be achieved per instance if individual problem constraints

are relaxed (i.e. either the constraint for the sum or number of

coupons in the envelope is not enforced). In case the constraint

for the sum of coupons is relaxed (i.e. it is not taken into

account), the maximal reward that can be achieved, in all

instances, is when the envelopes are all of Type3 (i.e. the

number of coupons is 50). On the other hand, when the

constraint for the minimum number of coupons is relaxed, the

best scenario, in all instances, is when all the envelopes are of

Type1 (i.e. the minimum sum of coupons is 250). If the

constraint for the minimum sum of coupons is relaxed then the

formula for calculation of upper bound values is UB = [No.

coupons] / [Min. no. of coupons per envelope type]*[Reward

per envelope type], otherwise, if the constraint for the

minimum number of coupons is relaxed the envisioned

formula is UB = [Total value] / [Min. sum of coupons per

envelope type]*[Reward per envelope type]. In the case of

relaxation of the minimum sum of coupon constraint, a sample

calculation of the upper bound value for instance

DFCP_2h_2k (the sixth column in Table 7) is

UB=200/50*20=80. Comparing the values in the sixth and the

seventh column of Table 7, one can notice that the scenario of

having envelopes of Type1 (i.e. the sum of coupons is 250)

while relaxing the constraint for the minimum number of

coupons, is the best scenario for all instances in the test set.

Hence, in the following section, we use these values as Upper

Bound (UB) limits (i.e. benchmark values) for evaluating the

results that are obtained by the introduced solution in this

paper.

C. Parameter settings

In order to fine tune the values of the parameters of the GA

and GRSAP approaches, a systematic experimentation is

performed by using the complete test set. Initially, based on

some preliminary experimentation, for each parameter, a

range, consisting of several best performing values, is selected.

Then, for each selected value, the algorithm is executed for

each test instance 10 times. As a result, for each single

parameter, the value that on average produces better results

than the other considered values, is adapted for the final round

Instance name

Instance details

Envelope details

Number of coupons Sum of coupons

Number

of coupons
Total value 30 40 50 250 500 800

DFCP_2h_2k

DFCP_2h_3k

DFCP_5h_5k

DFCP_5h_6k

DFCP_1k_10k

DFCP_1k_11k

DFCP_2k_20k

DFCP_2k_22k

DFCP_5k_50k

DFCP_5k_55k

200

200

500

500

1000

1000

2000

2000

5000

5000

2000

3000

5000

6000

10000

11000

20000

22000

50000

55000

60

60

160

160

330

330

660

660

1660

1660

75

75

180

180

375

375

750

750

1875

1875

80

80

200

200

400

400

800

800

2000

2000

80

120

200

240

400

440

800

880

2000

2200

60

90

150

180

300

330

600

660

1500

1650

50

80

120

150

250

280

500

550

1250

1380

Table 7. Test set details and maximal reward when relaxing individual constraints

Distribution of fiscal coupons via Genetic Algorithms and Greedy Randomized Adaptive Search Procedure 149

of the experimentation that is done with the aim of evaluating

the performance of the proposed algorithm. In this section, we

average results over the complete data set, by using the

average result of a given instance, that runs for 10 times when

experimenting with a specified value of a given parameter.

For all six parameters of the GA approach, during the

preliminary experimentation, five best performing values are

selected. As depicted in Figure 2, the best performing values

for the maximum generations and population size parameters

are 10000 and 5000, respectively. Further increasing the

values of these two parameters only costs longer computation

Figure 2. GA parameter settings

0

5

10

15

20

25

500 1000 2000 5000 10000

492

494

496

498

500

502

504

T
im

e
(s

)

F
it

n
es

s

MAXIMUM GENERATIONS

Fitness Time (S)

0

2

4

6

8

10

12

14

16

18

20

500 1000 2000 3500 5000

480

485

490

495

500

505

T
im

e
(s

)

F
it

n
es

s

POPULLATION SIZE

Fitness Time (S)

0

2

4

6

8

10

12

14

16

18

5 10 15 20 30

496

497

498

499

500

501

502

503

504

T
im

e
(s

)

F
it

n
es

s

TOURNAMENT SIZE

Fitness Time (S)

11.1

11.2

11.3

11.4

11.5

11.6

11.7

11.8

11.9

10 15 20 30 50

497

497.5

498

498.5

499

499.5

500

500.5

501

501.5

502

T
im

e
(s

)

F
it

n
es

s

SWAP MUTATE INTENSITY

Fitness Time (S)

10.6

10.8

11

11.2

11.4

11.6

11.8

12

12.2

10 15 20 30 50

498.5

499

499.5

500

500.5

501

501.5

502

502.5

T
im

e
(s

)

F
it

n
es

s

SHIFT MUTATE INTENSITY

Fitness Time (S)

11.5

11.52

11.54

11.56

11.58

11.6

11.62

11.64

10 20 30 40 50

497

498

499

500

501

502

503

T
im

e
(s

)

F
it

n
es

s

OPERATOR ALTERNATION

FREQUENCY

Fitness Time (S)

 150

time, while no further improvement can be reached. The best

value for the tournament size parameter is 20, while for the

swap and mutation intensities, the best values are 15 and 20

respectively. In regard to the alternation of the operators,

based on the experiments with operator alternation frequency

(oaf) parameter, whose best value is 10, it is obvious that it is

better to alternate (between shifting and swapping) more

frequently. In terms of the computation time, the higher the

value of a given GA parameter is, the slower the algorithm

becomes, except for the parameter of operator alternation

frequency, whose values seem not to make any noticeable

impact in this regard, as the maximal difference, from the

fastest scenario (oaf=50) to the slowest one (oaf=10) is only

0.12 seconds.

On the other hand, the maximum iterations parameter of the

GRASP approach has been tested against four different values,

and, as it can be seen in Figure 3, the best scenario (in terms

of fitness and time) is when the value of this parameter is 3.

Further, the experiments with the parameter of maximum local

search iterations show that the more iterations without

improvement runs the GRASP algorithm, the better the

quality of the solutions becomes. This is also the case of the

parameter of percentage of components, where its best (tested)

value is 10. In terms of mode of envelope filling, the

experiments show that the best way to fill the envelope is the

random one. In regard to the computation time, in general the

higher the value of the parameter the better the computation

time, expect normally for the maximum iterations parameter.

Also, the random way of envelope filling, in average, makes

the GRASP approach run faster than any of the two other

modes.

A. Comparison of results against upper bounds

In Table 8, we present the averaged results for individual

instances over ten executions in each of the two algorithms

(i.e. GA and GRASP). Further, the results are compared

against the upper bound values that were described in the

previous section. In general, it can be noticed that the GA

approach produces better results than the GRASP approach

for smaller instances with up to 1,000 coupons and a sum of

up to 11,000 currency units. Whilst, for larger instances, the

GRASP approach shows to perform better than the GA

approach, where the difference, in favor of GRASP approach,

goes up to more than 6.61% for instance DFCP_2k_22k,

except for instance DFCP_5k_50k, where the difference, in

favour of GA approach, is 2.84%. When the results are

averaged over the whole test set, the gap of GA and GRASP

from upper bound values is 29.16% and 32.01%, respectively.

This gap should be considered as relative, since the upper

bound values do not represent actual solutions to the problem,

but only the solutions to the relaxed version of it. With regard

to comparisons of the two approaches presented in this paper,

the experimental results show that the GA approach, in overall,

has an advantage of 3.74% in comparison to the GRASP

approach.

Table 9 shows the details concerning the best returned

results over all executions of both algorithms. As in the case

of the averaged results, also in the case of the best results, the

GA approach performs better than the GRASP approach for

smaller instances, whereas for larger instances the GRASP

approach is better, which drives up to almost 13% for instance

Figure 3. GRASP parameter settings

0

10

20

30

40

50

1 2 3 4

500

505

510

515

520

T
im

e
(S

)

F
it

n
es

s

M A X IM U M IT E R AT IO N S

Fitness Time (S)

17

18

19

20

21

22

8 10 12 14

490

500

510

520

T
im

e
(s

)

F
it

n
es

s

M A X IM U M LO C A L S E A R C H

IT E R AT IO N S

Fitness Time (S)

0

5

10

15

20

25

30

Higher

reward first

Lower

reward first

Random

400

420

440

460

480

500

520

540

T
im

e
(s

)

F
it

n
es

s

E N V E LO P E FILLIN G M O D E

Fitness Time (S)

17

18

19

20

21

5 7 10

495

500

505

510

515

520

T
im

e
(s

)

F
it

n
es

s

P E R C E NTA GE O F

C O M P O N EN T S

Fitness Time (S)

Distribution of fiscal coupons via Genetic Algorithms and Greedy Randomized Adaptive Search Procedure 151

DFCP_5k_55k. Further, in average, the best results that can

be achieved by the two approaches, in comparison to upper

bound values, have the gap of 24.99% and 25.15%,

respectively. This shows that for the best case scenario the

GRASP approach slightly outperforms the GA approach for

an average margin of 0.16%. Nonetheless, the GA approach is

also quite competitive to the GRASP approach, since its

results are either better or equal in 6 (out of 10) instances.

In Table 10, we show the average computation times

(derived from 10 executions) for both approaches. The results

show that the GA and GRASP approaches need about 27.79

and 13.21 seconds, respectively, to solve the DFCP problem.

These results indicate that, in overall, the GRASP approach is

about 2.1 times faster than the GA approach for the envisioned

test set. Nonetheless, it is evident that for smaller instances,

the GA approach takes a considerably longer computation

time than GRASP approach, which, in the worst case, can be

up to 67 times slower.

The worst case execution scenario of GA and GRASP, always

remains under a computation time of less than 40 and 60

seconds, respectively. This shows that both algorithms can be

used in practice, where generating good quality solutions

would enable the user to gain more revenue from the process

of coupon collection that is applied in tens of countries around

the globe (e.g. Republic of Kosovo [1]).

VI. Conclusion and Future Work

In this paper, we introduced a new problem for modelling

the optimal distribution of fiscal coupons and devised a MILP

mathematical formulation. Further, we presented two

metaheuristic approaches based on GA and GRASP

algorithms, which are able to solve the formulated problem at

hand in matter of few seconds by using standard computing

devices. In addition, a newly introduced test was used for

benchmarking purposes, where it was shown that both

approaches produce competitive results. On average, the GA

approach is better than GRASP approach for around 3.74%,

although, with regard to best returned results, the GRASP

approach returns slightly better results than the GA approach

for 0.16%, if the results are averaged over the complete test

set.

For additional comparison, as part of future work, we plan

to develop exact methods from the field of dynamic

programming and investigate hybridization of the presented

approaches, as well as utilization of constraint satisfaction

problem (CSP) techniques within the existing metaheuristics

for the envisioned problem.

Acknowledgment

Instance name Upper

bound (UB)

GA GRASP GA vs. UB

(%)

GRASP vs.

UB (%)

GRASP vs.

GA (%)

DFCP_2h_2k 80 61.82 53.0 22.73 33.75 14.26

DFCP_2h_3k 120 71.26 70.0 40.62 41.67 1.77

DFCP_5h_5k 200 159.57 146.0 20.21 27.00 8.50

DFCP_5h_6k 240 172.10 152.0 28.29 36.67 11.68

DFCP_1k_10k 400 297.20 289.5 25.70 27.63 2.59

DFCP_1k_11k 440 317.77 300.0 27.78 31.82 5.59

DFCP_2k_20k 800 574.25 582.0 28.22 27.25 -1.35

DFCP_2k_22k 880 613.43 625.0 30.29 28.98 -1.89

DFCP_5k_50k 2000 1348.26 1310.0 32.59 34.50 2.84

DFCP_5k_55k 2200 1427.17 1521.5 35.13 30.84 -6.61
Avg. 29.16 32.01 3.74

Table 8. Results of GA and GRASP versus upper bound limits (averaged over ten runs)

Instance name Upper

Bound (UB)

GA GRASP GA vs. UB

(%)

GRASP vs.

UB (%)

GRASP vs.

GA (%)

DFCP_2h_2k 80 65 60 18.75 25.00 7.69

DFCP_2h_3k 120 75 75 37.50 37.50 0.00

DFCP_5h_5k 200 170 160 15.00 20.00 5.88

DFCP_5h_6k 240 185 165 22.92 31.25 10.81

DFCP_1k_10k 400 330 330 17.50 17.50 0.00

DFCP_1k_11k 440 345 330 21.59 25.00 4.35

DFCP_2k_20k 800 600 660 25.00 17.50 -10.00

DFCP_2k_22k 880 645 660 26.70 25.00 -2.33

DFCP_5k_50k 2000 1365 1435 31.75 28.25 -5.13

DFCP_5k_55k 2200 1470 1660 33.18 24.55 -12.93
Avg. 24.99 25.15 -0.16

Table 9. Results of GA and GRASP versus upper bound limits (best run scenario)

Instance name GA (S) GRASP

(S)

GRASP/GA

DFCP_2h_2k 21.44 0.32 67.09

DFCP_2h_3k 21.01 0.32 65.89

DFCP_5h_5k 21.53 1.01 21.24

DFCP_5h_6k 22.06 1.01 21.85

DFCP_1k_10k 26.37 2.86 9.21

DFCP_1k_11k 24.41 2.90 8.42

DFCP_2k_20k 30.21 9.16 3.30

DFCP_2k_22k 32.46 8.01 4.05

DFCP_5k_50k 39.95 59.57 0.67

DFCP_5k_55k 38.43 46.90 0.82

Avg. 27.79 13.21 2.10

Table 10. Computation time of GA and GRASP

 152

We thank the former student of the University of Prishtina

Sejfi Hoxha for developing a tool for generation of test cases

for the Problem of Distribution of Fiscal Coupons.

References

[1] Tax Administration of Kosovo, "Tax Administration of

Kosovo," 2015. [Online]. Available: http://www.atk-

ks.org/.

[2] Minnesota Department of Revenue, "Sales Tax Fact

Sheet 167," 2015. [Online]. Available:

http://www.revenue.state.mn.us/businesses.

[3] C. Chekuri and S. Khanna, "A polynomial time

approximation scheme for the multiple knapsack

problem," SIAM Journal on Computing, vol. 35, no. 3,

pp. 713-728, 2005.

[4] W. Yeoh, A. Felner and S. Koenig, "BnB-ADOPT: An

asynchronous branch-and-bound DCOP algorithm," in

roceedings of the 7th international joint conference on

Autonomous agents and multiagent systems-Volume 2,

2008.

[5] R. Mailler and V. Lesser, "Solving distributed

constraint optimization problems using cooperative

mediation," in Proceedings of the Third International

Joint Conference on Autonomous Agents and

Multiagent Systems-Volume 1, 2004.

[6] T. Le, T. Cao Son, E. Pontelli and W. Yeoh, "Solving

distributed constraint optimization problems using

logic programming," Theory and Practice of Logic

Programming, vol. 17, no. 4, pp. 634-683, 2017.

[7] S. Yang, Q. Liu and J. Wang, "IEEE Transactions on

Automatic Control," IEEE Transactions on Automatic

Control, vol. 62, no. 7, pp. 3461-3467, 2017.

[8] Y. Chen and J.-K. Hao, "Memetic search for the

generalized quadratic multiple knapsack problem,"

IEEE Transactions on Evolutionary Computation, vol.

20, no. 6, pp. 908-923, 2016.

[9] M. Avci and S. Topaloglu, "A multi-start iterated local

search algorithm for the generalized quadratic multiple

knapsack problem," Computers & Operations

Research, vol. 83, pp. 54-65, 2017.

[10] N. Karmarkar and R. M. Karp, "An efficient

approximation scheme for the one-dimensional bin-

packing problem," in SFCS'08. 23rd Annual

Symposium on. IEEE, 1982.

[11] A. Lodi, S. Martello and M. Monaci, "Two-

dimensional packing problems: A survey," European

Journal of Operational Research, vol. 141, no. 2, pp.

241-252, 2002.

[12] Z. Kızıltan and B. Hnich, "Symmetry breaking in a

rack configuration problem," in IJCAI-2001 Workshop

on Modelling and Solving Problems with Constraints,

2001.

[13] Q. Hyseni, S. Yildirim Yayilgan, B. Krasniqi and K.

Sylejmani, "Solving the Problem Of Distribution Of

Fiscal Coupons By Using A Steady State Genetic

Algorithm," in 8th International Conference on

Innovations in Bio-Inspired Computing and

Applications (IBICA2017), Marrakech, Morocco,

2017.

[14] D. Whitley and J. Kauth, "GENITOR: A different

genetic algorithm," in 1988 Rocky Mountain

Conference on Artificial Intelligence.

[15] S. Luke, Essentials of Metaheuristics, Second ed.,

Lulu, 2013.

[16] T. Feo and M. Resende, "Greedy randomized adaptive

search procedures," Journal of global optimization,

vol. 6, no. 2, pp. 109-133, 1995.

Author Biographies

Kadri Sylejmani was born in May 1977. He did his PhD

thesis at Vienna University of Technology, Faculty of

Informatics. His main areas of research interest include
algorithm design and development for hard optimization

problems. He works as professor assistant at Faculty of

Electrical and Computer Engineering in University of
Prishtina, where he lectures courses in various subjects

within the ICT domain, such as programming languages,

algorithms and data structures, nature inspired algorithms,
e-commerce and legal, ethical and social issues in ICT.

Qëndresë Hyseni was born in May 1992. She received her
Bachelor degree in Telecommunications Engineering from

University of Prishtina, Kosovo, in 2013. Currently she is

doing research for her Master thesis in Computer
Engineering, again from University of Prishtina, Kosovo.

Her research covers mainly metaheuristics and

optimization algorithms.

 Sule Yaldirim Sule Yildirim was born July 1971. She is

associate professor at the Norwegian University of Science

and Technology (NTNU) at the Department of Information
Security and Communication Technology. Her main fields

of research interests are artificial intelligence, application

of machine learning in various fields, signal and image
processing and biometrics. She has participated in projects

funded by EU Horizon 2020, Eurostars and Erasmus+

programs, the Research Council of Norway, the Regional

Research Council of Norway and the Ministry of Foreign

Affairs, Norway. She belongs to the Norwegian

Information Laboratory, Center for Cyber Information

Security and the Norwegian Biometrics Laboratory. She
has been supervising students at different academic levels

over 20 years now and has been publishing more than 80

journal and conference papers in her fields of research. She
also actively takes part as PC in conferences and acts as

reviewer in several journals

Agon Qurdina was born in December 1992. He received

his Bachelor degree in Computer Engineering at
University of Prishtina, Kosovo, in 2014. Currently he is

doing research for his Master thesis in Computer

Engineering, again at University of Prishtina, Kosovo. The
research is based on neural networks' application in

specific domains.

Lekë Mula was born in July 1993. He received his

Bachelor degree in Computer Engineering from University
of Prishtina, Kosovo, in 2015. He is currently working on

finishing his master degree thesis in the same university.

His research covers many recommendation algorithms on
improving users search relevance in different areas.

http://www.ntnu.edu/iik
http://www.ntnu.edu/iik

Distribution of fiscal coupons via Genetic Algorithms and Greedy Randomized Adaptive Search Procedure 153

Bujar Krasniqi was born in October 1981. He received

his PhD degree in Electrical Engineering from Vienna
University of Technology, Austria in 2011. During the

academic year 2012-2013 he has been engaged as guest

lecturer, and after that he has become Professor in Faculty
of Electrical and Computer Engineering, University of

Prishtina, Kosovo. His main research interests are wireless

communication, green communications, optimization,
algorithms etc.

