
International Journal of Computer Information Systems and Industrial Management Applications.

ISSN 2150-7988 Volume 16 (2024) pp. 001-009

© MIR Labs, www.mirlabs.net/ijcisim/index.html

MIR Labs, USA

Microservices-based Architecture to Improve the

Enrollment Process of State Schools

Jashir R. Chirre Escate1, Giorgio G. Gamarra Gómez2, H. David Calderon-Vilca3 and

Flor C. Cárdenas-Mariño4

1 Software Engineering Department, Universidad Nacional Mayor de San Marcos,

Carlos German Amezaga s/n, Lima 01, Perú

jashir.chirre@unmsm.edu.pe

2 Software Engineering Department, Universidad Nacional Mayor de San Marcos,

Lima, Carlos Germán Amezaga #375, Perú

12200189@unmsm.edu.pe

3 Software Engineering Department, Universidad Nacional Mayor de San Marcos,

Lima, Carlos Germán Amezaga #375, Perú

hcalderonv@unmsm.edu.pe

4 Operations Research Department, Universidad Nacional Mayor de San Marcos,

Lima, Carlos Germán Amezaga #375, Perú

fcardenasm@unmsm.edu.pe

Abstract: This research proposes a microservices-based

architecture to improve the enrollment process of state schools

in times of pandemic. Microservices allow an application to

support higher request concurrency and fault tolerance in a

scenario where many users require to perform a web-based

enrollment process. The development process and the tools used

for the proposed architecture are also detailed. Through 4 types

of performance tests, it is demonstrated that the architecture

achieved an average efficiency of 177% compared to a

traditional monolithic architecture. Therefore, the study

concludes that the implementation of a microservices

architecture for the enrollment process of state schools is

reliable, efficient and functional.

Keywords: microservices, enrollment, education, system,

platform, distance learning system.

I. Introduction

Before the pandemic, some schools carried out the enrollment

process manually and in person. The student and his parents

approached the school to provide their information to the

school management area, the secretary is in charge of

obtaining the data provided by the parents and the student, she

is also in charge of receiving the payment and finally she is in

charge of store all the documentation delivered.

This face-to-face form of enrollment generates problems

when there are a large number of people to enroll. In this

situation, the time it takes to complete this process increases

considerably, which generates long queues outside the school

and great dissatisfaction on the part of the students. the

parents. One of the reasons why the time to carry out the

registration process increases is because there is only one

administrative staff in charge of this process.

In Peru, since the year 2020 due to the global pandemic,

classes and educational management became impossible to

perform in person, so in order not to jeopardize the national

education, the use of electronic devices and digital media

were prioritized as a solution for educational and logistical

processes of national schools [1].

In all countries, after declaring a State of Emergency due to

the COVID-19 crisis, governments have implemented a series

of strict measures to deal with this situation. Part of these

measures includes the closure of schools and higher education

centers, both public and private, as well as all World Cultural

and Natural Heritage sites.

The emergency generated by the pandemic highlighted the

need to strengthen the science, technology and innovation

system, which is key to providing a knowledge base for the

government's response in all areas, from diagnostic analyzes

to the social organization of confinement.

Within this context, educational modernization is speeded up

by the rapid development of the Internet, resulting in online

education gradually becoming a new educational model [2].

Educational institutions have chosen to transfer face-to-face

education to virtual education, as a consequence the use of

different platforms has increased enormously, student

enrollment platforms allow socioeconomic and academic data

to be recorded, which at the time of consultations and lists

they can take longer due to the number of records, so it is

Escate et al.

2

necessary to design new platforms with modern technologies

to speed up computational processes and transactions.

Currently, there are classic technological systems that help

educational management, but these systems struggle to

maintain normal business operations with their traditional

monolithic architectures, which are being overtaken by

current requirements [3].

As higher education has expanded rapidly in the past decade,

many universities' information systems have struggled to

maintain normal business operations with their traditional

monolithic architecture and service-oriented architecture,

leading to implementation problems. of the system,

difficulties in the implementation of the system, low levels of

utilization of resources, service obligation.

Microservices are considered as an approach to develop a

single application as a set of small services, each running its

own process independently, communicating with each other

with lightweight mechanisms, and can be written in different

programming languages and use different data storage

technologies. data for better performance.

The concept of microservices architecture has recently

emerged driven by the industry and is gaining increasing

popularity. The approach refers to a way of designing

software as a set of small independent services that cooperate

with each other using lightweight communication protocols.

Services are built and deployed individually, and are usually

supported by continuous integration and deployment

processes, the concepts of which are explained in later

sections.

Therefore, through research, several proposals for educational

and management platforms based on a microservices and

cloud architecture have been developed as a response to the

challenges faced by education in these times of pandemic and

the need to digitalize the classic processes of teaching and

management [4].

Proposals such as [3], present an Android platform developed

with a microservices architecture hosted in the cloud based on

the Node.js framework for the creation of REST APIs. This

application allows students to develop tasks, teachers to

assign them and parents to obtain performance reports, all this

with the possibility of adding new features thanks to the

modularization of microservices which are developed in

several layers to efficiently handle large JSON files. In this

proposal we find that they cover teaching processes but do not

focus on logistics management such as the enrollment

process.

Studies such as [8] propose the design of a public services

platform for university management based on microservices

architecture, with special attention to the problem of load

balancing and its optimization. In this research they use

microservices with Spring Cloud and devops. The tests were

performed on the Linux operating system and Docker with

Swarm 17.03.0 edition where 4 clusters were configured and

it was evidenced that the load of each node in the cluster

becomes much more balanced, optimizing the performance of

each node and improving the overall rate of resource

utilization of all clusters, with better load balancing of the

cluster. This proposal contains among its modules the

enrollment process but using a tool like Docker for containers

limits the concurrency support capacity to less than 50 TB per

second.

In the case of [9], they proposed an educational portal based

on a microservices architecture where the architecture

allowed them to make performance comparisons between

modules developed in .Net, PhP and Java, concluding that the

architecture allowed them to select languages and frameworks

for specific tasks, thus significantly optimizing performance

compared to a monolithic platform based on a single

programming language. Again, we found that this educational

portal is focused on the learning processes during student

classes, leaving aside logistical management processes such

as the enrollment process to one side.

Within the same context [5], they had the proposal of a

migration methodology from a monolithic system based on a

SOA (service-oriented architecture) architecture pattern that

did not allow a separation of independent responsibilities to a

microservices architecture where they used Docker containers

and the HTTP protocol, finding performance and scalability

improvements in the new system. In this research we found as

in the other proposals the option of using Docker as a module

container, which is a valid approach for non-massive

processes, if we wanted support for larger scale concurrency,

we would need another type of tool such as Kubernetes.

It was found that the proposals are focused on processes that

do not have concurrency problems or a significant number of

service requests. In addition, the research was conducted for

learning processes but not in logistic processes such as

enrollment, which in times of start of class needs to support a

massive amount of requests.

Therefore, in this research we propose an architecture based

on a microservices architecture to optimize the enrollment

process of state educational schools.

In section II we review the state of the art, in section III the

architecture design methodology and section IV results and

discussion.

II. State of Art

A. Microservices-based platforms oriented to education.

Studies such as [14], propose a software for learning

programming languages hosted in the cloud based on a

modular microservices architecture using JACK, a framework

for modular classification which enables the addition of new

courses, and ARTEMIs for automated assessment

management for interactive learning, which makes it a

scalable solution for learning in this specific area.

On the other hand another proposal with the same objective

but taken a little further is the one by [10] presenting a

platform where they focus on education and learning of

various programming languages using GitPod which is a

Microservices-based Architecture to Improve the Enrollment Process of State Schools

3

cloud service for the configuration of different development

environments allowing scalability, but in turn they add the

data science research modules using JupyterHub which is a

server that allows simultaneous access of multiple users to

their notebooks, this for students providing them with

modeling tools and big data analysis.

On the other hand, [3] has as a problem of distance education

of primary and secondary levels and aims to improve the

experience of learning and fulfill tasks in a didactic way. For

this reason, the aforementioned research proposes an Android

application using Node.js as Backend framework for the

creation of REST services based on microservices,

modularizing services in Docker containers hosted in the

cloud, this application has modules to control the teaching of

students and test management.

A proposal that addresses the same problem but for

universities is the one by [6], which presents a platform both

web and mobile, using Spring boot Java for the creation of

Rest services and JVM as a module container.

B. Design and techniques for the development of

microservices

[12] in their proposal design the AWS cloud microservices

deployment process because it provides a flexible

environment and proposes the use of containers using

Kubernetes because compared to Docker, Kubernetes is

designed to run on a cluster, while Docker runs on a single

node.

It also includes Debian image building, various optimization

schemes to reduce image size, container orchestration and

other activities, which further simplify the deployment

process. Separate research [13] and [19] agree on the idea that

architecture design in microservices should be performed in

cloud containers, in this case Azure is used since unlike AWS,

Azure does not lose performance when subjected to large

volumes of data (500TB) and they used Docker the most used

tool for creating cloud containers.

In the case of [15], it proposes some procedures to follow for

the development of a microservices architecture, such as

isolating errors using resiliency strategies to prevent errors

within a service from cascading by applying resiliency

patterns such as circuit breaker and bulkhead. Avoiding

coupling between services since among the causes of coupling

are rigid communication protocols and shared database

schemas.

A similar approach is proposed by [16], who for error

handling propose resistance patterns but in this case the

Health Endpoint Monitoring pattern and the Retry pattern, all

this to deal with unintentional errors. In the same context, [17]

and [18] consider that to mitigate error cases an application

load balancer should be implemented which balances the load

of HTTP and HTTPS traffic at the application layer and

allows routing connections to microservices based on IP

protocol data. It ensures that a network load balancer can

handle millions of requests per second while maintaining very

low latencies.

C. Tests and metrics performed on microservices-based

platforms

For learning platforms, the results of the proposal of [11] were

based on performance tests using the JMeter tool obtaining

stress test metrics, load test metrics ,compile time metrics,

response time and resource utilization tests, hosting the

architecture on a Linux Ubuntu 16 server, intel core i7, 32gb

RAM DDR4, 2TB SSD, comparing the proposal with a

traditional monolith learning system hosted on a Linux

Ubuntu server, intel core i5, 32gb RAM DDR4, 1TB SSD,

concluding that the proposed architecture is on average 253%

more efficient than the traditional monolith architecture of a

classical platform.

On the other hand, [10] and [20] used Sentry as a performance

monitoring and error tracking tool, in which the proposals

based on microservices presented a medium level of

availability by generating failures in correlative module

requests, preventing the application from becoming

inoperable, while a traditional monolith architecture resulted

in a null level of availability by generating failures in HTTP

services.

In contrast to the type of metrics in the research of [3], the

results of Fenglong's proposal were based on user surveys

targeting parents and students, with the results showing that

students and parents were in a large percentage to take the

education from home and not face-to-face as the platform was

reliable enough.

III. Architecture design methodology

To design the architecture based on microservices we have

considered the tools: a Registry to annotate and discover the

microservices and the tool we use is Eureka Server;

Additionally, we have used a Load Balancer to load balance

the microservices and the tool we selected is Ribbon; To

manage the fault tolerance of the microservices we used a

Circuit Braker as a tool, we chose Hystrix, an API gateway

was also necessary for a single point of access for the

microservices and finally a Log center to save the logs.

Figure 1. Solution architecture

Proposed architecture

The web application is implemented in 2 parts, the first part

being the Frontend implementation which is implemented

with Vue.js and React.

Escate et al.

4

The second part corresponds to the Backend implementation,

which is implemented in the spring boot framework, using the

Java programming language in its version 8.0. The spring

boot framework allows using the whole model of

microservices oriented architecture together with spring cloud

that allows giving the necessary tools to execute the

microservices correctly. Among the tools we used Registry to

register and discover the microservices, for our case we used

Eureka Server.

We also implemented a Config Server that allows to register a

centralized configuration of the microservices. Additionally, a

Load Balancer was configured to make a load balancing of the

microservices and the most appropriate tool that we selected

is Ribbon.

To manage the fault tolerance of the microservices, a Circuit

Braker was implemented, which in our case we will use

Hystrix; an API gateway was also needed for a single point of

access of the microservices and finally a Log center to store

the logs in a centralized point. Each microservice implements

a design pattern of N layers, in addition to exposing APIs that

are responsible for transmitting the information in Json format

to the Front end of the application.

The means of communication between the microservices is

via HTTP protocol using Restful Web services with POST,

GET, PUT and DELETE verbs, in addition to XML

serialization.

Figure 1. Solution architecture

International Journal of Computer Information Systems and Industrial Management Applications.

ISSN 2150-7988 Volume 16 (2024) pp. 001-009

© MIR Labs, www.mirlabs.net/ijcisim/index.html

MIR Labs, USA

For data storage, the relational database PostgresSql was used,

which can store the data that would be the core of the

application, also a function was added for the storage of

shared documents or images that corresponds to scans of

documents or photos if necessary.

The architecture of the solution based on microservices was

divided into 3 components, the first being an experience

microservice, the second a support microservice and finally a

business microservice.

Experience microservices

The experience microservices are the microservices in charge

of the orchestration of services, that is to say, they are in

charge of consuming other services that elaborate an

independent task in such a way that it generates a correct flow

of service consumption to complete the objective of the

system.

These microservices cannot connect to a database and if

required, a support microservice is used to achieve it. The first

one is called "student enrollment", this microservice is in

constant communication with the front end application and is

in charge of receiving HTTP requests and delivering the

responses in Json format to these requests, besides performing

the orchestration of the microservices that interact with the

enrollment process of the students with their respective study

center, and also the orchestration of the microservices that

interact with the enrollment process of the students with their

respective study center, and also the orchestration of the

microservices that interact with the enrollment process of the

students with their respective study center.

This microservice is the one related to the Fronted enrollment

module. The second business microservice is "School

Management" which, like the previous microservice, is in

charge of orchestrating the microservices in charge of the

CRUD processes of the schools.

Support microservices

The support microservices are those in charge of performing

support processes, mostly to lighten the processes

corresponding to the business objective, such as database

connections or the consumption of a business microservice.

For the proposed architecture we have 2 support

microservices, the first microservice is called "User security"

in charge of user validation by connecting to the Registro

Nacional de Identificación y Estado Civil (RENIEC) to verify

the existence of the person.

When the microservice of experience consumes this service, it

provides the data obtained from RENIEC, the obtaining of

these is by means of the consumption of a SOAP API that

gives us an answer in XML format and which was

transformed to Json format which is the standard format in

which we return the answers through our REST APIs.

The second support microservice is "Party Data", this

microservice is responsible for storing in the database the data

that has been validated by RENIEC. The reason for this action

is to reduce the number of calls to RENIEC services, in

addition to reducing the cost of using this service.

Business microservices

The business microservices are those in charge of connecting

to databases, SOAP or REST connections with providers or

communicating with some core program that the business is

using. For the proposed architecture we have 4 business

microservices, the first one being the microservice called

"Enrollment Process" which is responsible for containing all

the vital business logic, i.e., in this microservice is

concentrated all the information relating to the enrollment of

students and the respective rules and validations.

This microservice receives all the information obtained from

the Front end, which is transformed by the "student

enrollment" experience microservice so that it can be

processed in this business microservice, in addition to a

connection to databases to store the student enrollment

records in their respective study centers.

The second microservice is called "School administrator", this

microservice has the logic to maintain the schools throughout

the life cycle of the schools, that is, it is a CRUD that is

responsible for adding, updating and deleting schools in the

database. This microservice is consumed by the experience

microservice "School Management" which receives and

transforms the data obtained from the Front end in order to use

this service.

The third microservice called "Document Services" which is

responsible for document storage, these documents were

stored in pdf and also supports image storage to store scans of

documentation that cannot be digitized.

The fourth microservice is called "Correspondence", this

microservice is using the JAVA mailing library and

connecting to a mail server to send a notification of successful

enrollment to the mail used during the enrollment process.

Storage (PostgreSql)

For the web service a database manager was used, the one we

selected for this architecture proposal was Postgresql in its

version 14. The database manager "Postgresql" was used to

help build the storage of security information, user data,

system enrollment information, CRUD information from the

schools, etc.

Additionally, we opted for the strategy of using 2 databases,

one exclusively for the storage of business information, and

another multichannel one that can be shared by several

microservices in order to be scalable over time.

Load balancer (Ribbon)

In a distributed environment, services need to communicate

with each other. The communication can either happen

synchronously or asynchronously. Now, when a service

communicates synchronously, it is better for those services to

load balance the request among workers so that a single

worker does not get overwhelmed.

Load balancing is the process of distributing traffic among

different instances of the same application. To create a

Escate et al.

6

fault-tolerant system, it's common to run multiple instances of

each application. Thus, whenever one service needs to

communicate with another, it needs to pick a particular

instance to send its request. There are many algorithms when

it comes to load balancing:

• Random selection: Choosing an instance randomly

• Round-robin: Choosing an instance in the same order

each time

• Least connections: Choosing the instance with the fewest

current connections

• Weighted metric: Using a weighted metric to choose the

best instance (for example, CPU or memory usage)

• IP hash: Using the hash of the client IP to map to an

instance

Spring Cloud Ribbon is a library that allows communication

between different processes whose main feature is to provide

different algorithms to perform client-side load balancing. In

addition to client-side load balancing, Ribbon provides other

useful functions such as the following:

• Integration with Eureka Server: this integration allows

obtaining information from the services registered in

Eureka and performing load balancing between them.

• Fault tolerance: with Ribbon it is possible to determine

which services are up or down dynamically and thus act

accordingly to guarantee the service.

• Load balancing strategies: with Ribbon you can set up

standard and custom load strategies by providing

several strategies for load balancing such as

RoundRobin Rule, Availability Filtering Rule or

Weighted Response Time Rule. It also allows you to

adjust the strategy according to particular needs.

Circuit Breaker (Hystrix)

The purpose of the Circuit Breaker pattern is different than the

Retry pattern. The Retry pattern enables an application to

retry an operation in the expectation that it'll succeed. The

Circuit Breaker pattern prevents an application from

performing an operation that is likely to fail. An application

can combine these two patterns by using the Retry pattern to

invoke an operation through a circuit breaker. However, the

retry logic should be sensitive to any exceptions returned by

the circuit breaker and abandon retry attempts if the circuit

breaker indicates that a fault is not transient.

A circuit breaker acts as a proxy for operations that might fail.

The proxy should monitor the number of recent failures that

have occurred, and use this information to decide whether to

allow the operation to proceed, or simply return an exception

immediately.

Hystrix is a library that implements the Circuit Breaker

pattern. Hystrix allows us to manage interactions between

services in distributed systems by adding latency and fault

tolerance logic. Its purpose is to improve the overall reliability

of the system, for this Hystrix isolates the access points of the

microservices, thus preventing cascading failures through the

different components of the application, providing fallback

alternatives, managing timeouts, thread pools, etc.

API Gateway

Zuul is an edge service that allows dynamic routing, load

balancing, monitoring and request securitization. For practical

purposes Zuul is a server composed of filters, each of which is

focused on a specific functionality. Zuul is configured as the

entry point to the microservices ecosystem and was in charge

of routing, balancing and securing the requests received by the

microservices.

Each request sent to Zuul passed through the filters that

compose it, which depending on the characteristics of the

request can, for example reject, it for security reasons, register

it for monitoring purposes, route it to a certain instance of a

microservice according to the configured filters.

By default, Zuul uses Ribbon to locate, through Eureka, the

microservice instances to which it will route the requests to be

executed within a "Hystrix Command", thus integrating all the

components of the architecture and taking advantage of all the

benefits provided by the spring cloud ecosystem.

Config Server

Eureka is a service that allows other microservices to register

in its directory. When a microservice registered in Eureka

starts, it sends a message to Eureka indicating that it is

available. The Eureka server will store the information of all

registered microservices, as well as their status.

Communication between each microservice and the Eureka

server is done via heartbeats every "X" seconds. If Eureka

does not receive a heartbeat of a given type after 3 intervals,

the microservice is removed from the registry.

In addition to keeping track of active microservices, Eureka

also offers other microservices the possibility to "discover"

and access other registered microservices. Therefore, Eureka

is considered a microservice discovery and registration

service.

Tracing

Zipkin was originally developed at Twitter, based on a

concept of a Google paper that described Google’s

internally-built distributed app debugger – dapper. It manages

both the collection and lookup of this data. To use Zipkin,

applications are instrumented to report timing data to it.

Zipkin is a very efficient tool for distributed tracing in the

microservices ecosystem. Distributed tracing, in general, is

the latency measurement of each component in a distributed

transaction where multiple microservices are invoked to serve

a single business usecase.

Distributed tracing is useful during debugging when lots of

underlying systems are involved and the application becomes

slow in any particular situation. In such cases, we first need to

identify which underlying service is actually slow. Once the

slow service is identified, we can work to fix that issue.

Distributed tracing helps in identifying that slow component

in the ecosystem.

Internally it has 4 modules:

• Collector – Once any component sends the trace data, it

arrives to Zipkin collector daemon. Here the trace data

is validated, stored, and indexed for lookups by the

Zipkin collector.

Microservices-based Architecture to Improve the Enrollment Process of State Schools

7

• Storage – This module store and index the lookup data

in backend. Cassandra, ElasticSearch and MySQL are

supported.

• Search – This module provides a simple JSON API for

finding and retrieving traces stored in backend. The

primary consumer of this API is the Web UI.

• Web UI – A very nice UI interface for viewing traces.

To improve tracing we integrated Zipkin with Sleuth to

improve the tracing. Sleuth is another tool from the Spring

cloud family. It is used to generate the trace id, span id and

add this information to the service calls in the headers and

MDC, so that It can be used by tools like Zipkin and ELK etc.

to store, index and process log files.

As it is from the spring cloud family, once added to the

CLASSPATH, it automatically integrated to the common

communication channels like:

• requests made with the RestTemplate.

• requests that pass through a Netflix Zuul microproxy.

• HTTP headers received at Spring MVC controllers.

• requests over messaging technologies like Apache Kafka

or RabbitMQ etc.

IV. Results and Discussion

The proposed microservices-based architecture has been

subjected to 4 types of performance tests, such as load,

compilation, response time and resource utilization tests,

using the JMeter tool which allowed us to perform the tests.

The tests were performed by comparing it with an enrolling

system developed with a monolithic architecture.

The tests were performed on a computer with a third

generation Intel Core I3 processor with 2.63 Ghz frequency,

with a capacity of 8Gb of DDR2 ram memory, hard disk with

20Gb of space that was destined for the database. At the same

time, it should be noted that the same equipment worked as a

server, database manager, and e-mail server.

For the stress tests given the low performance of the

hardware in possession was limited to tests of 10 and 20

samples because when using more samples, the equipment

reached its maximum operating point and produced errors due

to lack of memory and among others.

Result tables

Table 1. Compilation comparison

Architecture Best result

(seconds)

Average result

(seconds)

Monolith 30 35

Microservices 12 16

It was found that, for the compile time comparison, the

proposal was found to be 218% faster compared to a

traditional monolithic system.

Table 2. Comparison of the response time of 10 requests.

Architecture Best result

(seconds)

Average result

(seconds)

Monolith 7.731 8,671

Microservices 4.93 4.875

On the other hand, the response time of 10 concurrent

requests resulted in a 177% faster response time for the

microservices architecture proposal.

Table 3. Comparison of load test of 20 requests.

Architecture Best result

(seconds)

Average result

(seconds)

Monolith 13,709 15,799

Microservices 6,062 10,037

As for the load test by sending 20 simultaneous requests,

the proposal showed better performance by performing the

task 156% faster than the monolith architecture.

Table 4. Comparison in memory usage

Architecture Best result Average result

Monolith - 92%

Microservices - 96%

Finally, in the resource utilization test, it was shown that the

proposal requires 96% of cpu usage, which is higher than the

monolith architecture, because the microservices architecture

requires greater complexity and more resources for its

operation.

Discussion

The results achieved are similar to the results of the proposal

of the researcher [11], who obtained with the same JMeter

tool comparing a monolith system and his proposal with

microservices reaching an average performance level of more

than 200% which exceeds our proposal which obtained an

average of 180%. However, it should be noted that the

researcher used the high-performance server of AWS

(Amazon Web Services) which allowed him to obtain the

exposed result, finally it should be highlighted that his

research does not focus on enrollment processes but on

learning processes.

Regarding the research of [20] who present a platform both

web and mobile, using Spring boot Java for the creation of

Rest services and JVM as a module container. This did not

contemplate a scenario of massive concurrency, in which our

proposal was submitted, and we developed specific tools for

this casuistry, where we implemented an orchestrator that

manages the traffic of requests and if at some point the

concurrency comes to indispose a service, our balancer was in

charge of pointing to a new available server.

Escate et al.

8

The proposals of [17] and [21] include a balancer as our

proposal to ensure the availability of the service modules,

where we agree that it is the best solution for massive loads in

a given time.

Our proposed microservices-based architecture was compared

with a monolithic system of enrollment and was submitted to

4 types of performance tests, such as load tests, compilation,

response time and resource utilization tests, using the JMeter

tool which allowed us to perform the tests. On the other hand,

other researchers found new ways to test their research, as is

the case of [8] and [22], who opted for user satisfaction

surveys using Likert scale, measuring the results by

percentages at the end.

Researchers [10] and [23] add to this type of tests using a

satisfaction survey but in this case the satisfaction scale CSAT

(Customer Satisfaction Score).

Research [7], [11], [24] and [25], propose a microservices

architecture focused on education in learning processes such

as interactive modules that facilitate student learning. While

our microservice proposal is also focused on education, it also

presents an architecture for management modules such as the

enrollment process of schools which has to support a large

concurrency in times of beginning of the school year and even

more in a scenario of global pandemic as we are living in this

2021.

Conclusions

This research proposed an architecture based on

microservices to improve the enrollment process of state

schools. From the review of the state of the art it was found

that the use of microservices is the most appropriate for the

project since monolithic architectures do not have the

availability, fault tolerance and performance that

microservices do.

Having tested the architecture by submitting it to different

performance tests, it was concluded that the architecture

obtained an outstanding performance, and that it can be

applied to solve the problem of massive concurrency in times

of school enrollment. It is evident that there is still more work

to be done in terms of development and user experience.

The next steps to be taken will be linked to the

implementation of this microservices architecture approach to

different processes that require a high level of availability in

concurrency peaks, such as what happened in the middle of

the pandemic.

References

[1] “Resolución Viceministerial N° 088-2020-MINEDU”.

https://www.gob.pe/institucion/minedu/normas-legales/

466186-088-2020-minedu (consultado nov. 13, 2021).

[2] H. Zhao, Y. Jiang, y X. Zhao, “Design and research of

University intelligent education cloud platform based on

Dubbo microservice framework”, en 2020 5th

International Conference on Mechanical, Control and

Computer Engineering (ICMCCE), Harbin, China, dic.

2020, pp. 870–874. doi:

10.1109/ICMCCE51767.2020.00191.

[3] Y. Fenglong, R. Changning, Z. Minghui, Y. Diankang, y

W. Yujie, “An Android Learning Platform in Elementary

and Secondary Education Based on Micro-Service

Architecture”, p. 8.

[4] Y. Berkunskyi, K. Knyrik, T. Farionova, y T. Smykodub,

“Using Microservices in Educational Applications of

IT-Company”, p. 4, 2017.

[5] F. Auer, V. Lenarduzzi, M. Felderer, y D. Taibi, “From

monolithic systems to Microservices: An assessment

framework”, Inf. Softw. Technol., vol. 137, p. 106600,

sep. 2021, doi: 10.1016/j.infsof.2021.106600.

[6] L. Huang, C. Zhang, y Z. Zeng, “Design of a public

services platform for university management based on

microservice architecture”, Microsyst. Technol., vol. 27,

núm. 4, pp. 1693–1698, abr. 2021, doi:

10.1007/s00542-019-04474-4.

[7] J. Cao, “Design on Deployment of Microservices on

Container-based Cloud Platform”, J. Phys. Conf. Ser.,

vol. 1624, p. 062008, oct. 2020, doi:

10.1088/1742-6596/1624/6/062008.

[8] A. Fellah y A. Bandi, “Microservice-based Architectures:

An Evolutionary Software Development Model”, pp.

41–32. doi: 10.29007/1gx5.

[9] A. Bucchiarone et al., Eds., Microservices: Science and

Engineering. Cham: Springer International Publishing,

2020. doi: 10.1007/978-3-030-31646-4.

[10] N. Chondamrongkul, J. Sun, y I. Warren, “Software

Architectural Migration: An Automated Planning

Approach”, ACM Trans. Softw. Eng. Methodol., vol. 30,

núm. 4, pp. 1–35, jul. 2021, doi: 10.1145/3461011.

[11] N. C. Mendonca, C. Box, C. Manolache, y L. Ryan, “The

Monolith Strikes Back: Why Istio Migrated From

Microservices to a Monolithic Architecture”, IEEE

Softw., vol. 38, núm. 5, pp. 17–22, sep. 2021, doi:

10.1109/MS.2021.3080335.

[12] Freight One, E. A. Zharkov, V. D. Malygin, y MOC IKT,

“Intellectual Mathematical Support Software and Inner

Architecture of LMS MAI CLASS.NET”, Bull. South

Ural State Univ. Ser. Math. Model. Program. Comput.

Softw., vol. 14, núm. 3, pp. 46–60, 2021, doi:

10.14529/mmp210304.

[13] J. Kostolny y J. Bohacik, “Development of an Education

Information Portal with Microservices”, en 2019 14th

International Conference on Advanced Technologies,

Systems and Services in Telecommunications

(TELSIKS), Nis, Serbia, oct. 2019, pp. 368–371. doi:

10.1109/TELSIKS46999.2019.9002184.

[16] K. Miao, J. Li, W. Hong, y M. Chen, “A

Microservice-Based Big Data Analysis Platform for

Online Educational Applications”, Sci. Program., vol.

2020, pp. 1–13, jun. 2020, doi: 10.1155/2020/6929750.

[17] T. Hinrichs y H. Burau, “A Scaleable Online

Programming Platform for Software Engineering

Education”, p. 8.

[18] S. Ghavifekr, A. Z. A. Razak, M. F. A. Ghani, N. Yan, Y.

Meixi, y Z. Tengyue, “ICT Integration In Education:

Incorporation for Teaching & Learning Improvement”,

vol. 2, núm. 2, p. 22.

[19] M. Waseem, P. Liang, y M. Shahin, “A Systematic

Mapping Study on Microservices Architecture in

DevOps”, J. Syst. Softw., vol. 170, p. 110798, dic. 2020,

doi: 10.1016/j.jss.2020.110798.

Microservices-based Architecture to Improve the Enrollment Process of State Schools

9

[20] M. A. Rahman, M. S. Abuludin, L. X. Yuan, Md. S.

Islam, y A. T. Asyhari, “EduChain: CIA-Compliant

Block-chain for Intelligent Cyber Defense of

Microservices in Education Industry 4.0”, IEEE Trans.

Ind. Inform., pp. 1–1, 2021, doi:

10.1109/TII.2021.3093475.

[21] V. Bushong et al., “On Microservice Analysis and

Architecture Evolution: A Systematic Mapping Study”,

Appl. Sci., vol. 11, núm. 17, p. 7856, ago. 2021, doi:

10.3390/app11177856.

[22] M. Moussa, A. Benachenhou, S. Belghit, A. Adda

Benattia, y A. Boumehdi, “An Implementation of

Microservices Based Architecture for Remote

Laboratories”, en Cross Reality and Data Science in

Engineering, vol. 1231, M. E. Auer y D. May, Eds.

Cham: Springer International Publishing, 2021, pp.

154–161. doi: 10.1007/978-3-030-52575-0_12.

[23] J. Kostolny y J. Bohacik, “Development of an Education

Information Portal with Microservices”, en 2019 14th

International Conference on Advanced Technologies,

Systems and Services in Telecommunications

(TELSIKS), Nis, Serbia, oct. 2019, pp. 368–371. doi:

10.1109/TELSIKS46999.2019.9002184.

[24] “Microservices”, martinfowler.com.

https://martinfowler.com/articles/microservices.html

(consultado nov. 16, 2021).

[25] D. A. Bauer, B. Penz, J. Mäkiö, y M. Assaad,

“Improvement of an Existing Microservices Architecture

for an E-learning Platform in STEM Education”, p. 10,

2018.

Author Biographies

Jashir R. Chirre Escate Expert Backend developer,
passionate about Microsservice Architecture,

mathematics and affective computing. He developed with

his fellow students a Microservice Architecture.

Giorgio G. Gamarra Gómez Expert in microservices,

passionate about new technologies and mathematics. He
developed with his fellow students a Microservice

Architecture. He is currently looking to open new

projects about cloud systems.

Flor Cagniy Cárdenas Mariño PhD in Computer

Science, research professor of the "Optimización
Matemática y Computacional" Group of the

Universidad Nacional Mayor de San Marcos - Peru,

advisor of undergraduate and graduate thesis projects
related to artificial intelligence.

